<u> </u>	ነ8012ን	("47	W 11	_																
	127		(7-2-1-)									310	NS	_						\dashv
					LTR			D	ESCR	IPTIC	N C			_	DAT	_	AP	PRO	VED	
				Γ												١				ı
				ı		İ								l		١				
				1		ı								•		•				Ì
																				i
DEV 1	7-7		· •	- -1					I										1	1_
REV	H	1				-							1	1				<u> </u>	1	1
PAGE	REV	1																	T-	
	REV	s																	T-	
PAGE REV STATUS OF PAGES	PAGE	s				BY							TA	RY			HA NA	W		I I G
PAGE REV STATUS OF PAGES Defense Electron	PAGE	8		Tre	a a	1. L	\frac{1}{2}			_ I T⊦	ie c	Irawi	na is	RY	lable	for	use	by	IN	I G
PAGE REV STATUS OF PAGES Defense Electron	PAGE	S		Tre	a a	BY BY	7			Th al	nis d I De	irawi partr	ng is nents	avai and	lable Agen	for	use	by	IN	I G
PAGE REV STATUS OF PAGES Defense Electron Supply Center	PAGE	s		Tre	a a	1. L	1		8	Th al Di	nis d I De epar	irawi partr tmen	ng is nents t of l	avai and Defens	lable Agen se	for ncies	use s of	the		
PAGE REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio	PAGE	S	\delta \	ECC	a a	2. 1. D.	1 to 6	ng.	8	Th al Di	nis d I De epar	partr tmen : MI	ng is nents t of l CROC 10S U	avai and Defens IRCU IP/D0	lable Agen se ITS, NN 4-	for ncies DIG	use s of ITAL	the	GH-SF	
PAGE REV STATUS OF PAGES Defense Electron Supply Center	PAGE	s	\delta \	ECC	ED	2. L Di Ver	la	ng	8	The all Di	nis d I De epar	trawi partr tmen : MI CN M(ng is nents t of I CROC 10S U	avai and Defens	lable Agen se ITS, NN 4-	for ncies DIG	use s of ITAL	the	GH-SF	
PAGE REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio Original date	PAGE:	8	\delta \	PROPERTY	ED	DA DA SPEY SODE	S IDE	ng NT.	NO.	The all Di	nis d I De epar	trawi partr tmen : M] : CN M(ng is nents t of I (CROC MOS U (NOL)	avai and Defens IRCU P/DO THIC	Agen Se ITS, IN 4- SILI	DIG BIT	i ITAL	the HIC UNTE	GH-SF R	
PAGE REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio Original date of drawing:	PAGE:	s	AP SIZ	PROPERTY	ED	DA DA SPEY SODE	la	NT.	No.	The all Di	nis on Deepart	trawi partr tmen : MI CN M(ng is nents to fill (CROC) 10S UDNOL)	avai and Defens IRCU IP/D0	Agendae ITS, NN 4- SILI	DIG BIT	i ITAL	the HIC UNTE	GH-SF R	

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193 MAY 86

- 1. SCOPE
- $1.1\,$ Scope. This drawing describes device requirements for class B microcircuits in accordance with $1.2.1\,$ of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type

Generic number

Circuit function

Counter, decade, up/down, 4-bit synchronous with asychronous reset

1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

E D-2 (16-lead, 1/4" x 7/8"), dual-in-line package
C-2 (20-terminal, .350" x .350"), square chip carrier package

1.3 Absolute maximum ratings. 1/

Supply voltage range - - - - - - - - - - --0.5 V dc to +7.0 V dc -0.5 V dc to V_{CC} +0.5 V dc -0.5 V dc to V_{CC} +0.5 V dc DC output voltage ------Clamp diode current - - - - - - - - - -±20 mA DC output current (per pin) ------*25 mA ±50_mA -65°C to +150°C Maximum power dissipation (PD) 2/----500 m₩ Lead temperature (soldering, 10 seconds) - - - -+260°C Thermal resistance, junction-to-case (θ_{JC}) : See MIL-M-38510, appendix C 60° C/W $\frac{3}{}$ +175 $^{\circ}$ C Junction temperature (T_J) - - - - - - - - -

1/ Unless otherwise specified, all voltages are referenced to ground.

 \overline{Z} / For T_C = +100°C to +125°C, derate linearly at 12 mW/°C.

3/ When a thermal resistance for this case is published in MIL-M-38510, appendix C, that value shall supersede the value indicated herein.

MILITARY DRAWING	SIZE A	14933	DWG NO. 5962-87808			
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	PAGE	2		

查询"5962-87808012X"供应商	У			
.4 Recommended operating conditions.				
		+2 0 V dc +0	+6 0 V dc	
Supply voltage (V_{CC}) Case operating temperature range (T	(a)	55°C to +12	5°C	
Tomore using an fall time:				
Vcc = 2.0 V		- 0 to 1000 ns		
V _{CC} = 4.5 V		- 0 to 500 ns		
VCC = 2.0 V		 0 to 400 ns 		
Minimum setup time, data to load it	:51:			
T _C = +25°C:		- 110 ns		
Vcc = 4.5 V		- 110 ns - 22 ns		
V _{CC} = 2.0 V		- 19 ns		
T				
V _{CC} = 2.0 V		- 165 ns		
VCC = 4.5 V		- 33 ns - 28 ns		
Minimum hold time, data to load (the	ı):	20 113		
To = +25°C.				
V _{CC} = 2.0 V V _{CC} = 4.5 V		- <u>5</u> ns		
V _{CC} = 4.5 V		- 5 ns		
V _{CC} = 4.5 V		- 5 ns		
T _C = -55°C to +125°C: V _{CC} = 2.0 V		- 5 ns		
V _{CC} = 4.5 V		- 5 ns		
V _{CC} = 6.0 V		- 5 ns		
Minimum clear/load pulse width (tw)	1:			
$T_C = +25^{\circ}C$:		- 260 ns		
V _{CC} = 2.0 V V _{CC} = 4.5 V		- 52 ns		
V _{CC} = 6.0 V		- 45 ns		
T _C = -55°C to +125°C:				
T _C = -55°C to +125°C: V _{CC} = 2.0 V		- 390 ns		
VCC = 4.5 V		- 78 ns - 68 ns		
Minimum count up/down pulse width ((tw)	- 00 113		
T - +0E*C.				
V _{CC} = 2.0 V		- 125 ns		
VCC = 4.5 V		- 25 ns		
$T_{C} = -55^{\circ}C \text{ to } +125^{\circ}C$:		- 21 ns		
Vcc = 2.0 V = = = = = = = =		- 190 ns		
Vcc = 4.5 V		- 38 ns		
Vrc = 6.0 V		- 32 ns		
Minimum recovery time, clear to clo $T_C = +25$ °C:	OCK (TREC)			
V _{CC} = 2.0 V		- 50 ns		
Vcc = 4.5 V		- 10 ns		
Vcc = 6.0 V		- 9 ns		
$T_{C} = -55^{\circ}C \text{ to } +125^{\circ}C$:		75		
V _{CC} = 2.0 V		- 75 ns - 15 ns		
V _{CC} = 6.0 V		- 13 ns		
Maximum frequency, count up/down (fmax)	··•		
$T_C = +25^{\circ}C$:				
V _{CC} = 2.0 V		- 3 MHz - 18 MHz		
VCC = 4.5 V		- 18 MHz		
T _C = -55°C to +125°C:		LV HIL		
Vrr = 2.0 V		- 2 MHz		
V _{CC} = 4.5 V		- 11 MHz		
VCC = 6.0 V			T =	
	SIZE	ODE IDENT. NO.	DWG NO.	
MILITARY DRAWING	A	14933	5962-87808	
DEFENSE ELECTRONICS SUPPLY CENTER	—			
DAYTON, OHIO	1	REV	PAGE	3
571.7511, 5111.5	1	i		

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-3851U and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 3.
 - 3.2.4 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

MILITARY DRAWING	SIZE A	14933	DWG NO		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	4

TARLE	1.	Flectrical	performance	characteristics.
INDLL	1.	LIECUITCAI	periormance	Character 13cles.

Test	 Symbol	Conditions	_	Group A	Lim	Unit	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-55°C < T _C < +12	25°C <u>1</u> /	subgroups	Min I	Max l	
High level output voltage	i ∨ _{OH} 		V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	1,2,3	1.9 4.4 5.9		V
		I ₀ < 4.0 mA	Y _{CC} = 4.5 V		3.7		[
	 	 I ₀ <u><</u> 5.2 mA	V _{CC} = 6.0 V		 5.2 		
ow level output voltage	V _{OL}	 	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	1,2,3	0.1 V		
	i 	 I ₀ <u><</u> 4.0 mA	YCC = 4.5 V	 		0.4	 -
	 	I0 < 5.2 mA	V _{CC} = 6.0 V			0.4	
High level input voltage	VIH	2/	VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V	1,2,3	1.5	1	V
Low level input voltage	VIL	2/	VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V	1,2,3		0.3	V
Input capacitance	CIN	V _{IN} = 0 V, T _C = +25°C see 4.3.1c		4	 	 10 	l pF
Quiescent current	Icc	VCC = 6.0 V; VIN = VC	C or GND	1,2,3	 	 160 	1 1 μΑ
Input leakage current	IIN	VCC = 6.0 V; VIN = VC	c or GND	1,2,3		±1	μA
Functional tests		see 4.3.1d		7		 	

See footnotes at end of table.

MILITARY DRAWING	SIZE	14933	DWG NO. 5962-87808	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	PAGE 5	

查询"5962-87808012X"供应商

	LE I. <u>E</u>	lectrical performance o		continued.			
Test	Symbol 	Conditions -55°C <u><</u> T _C <u><</u> +12	Group A	l Limi Limi Min		Unit	
Propagation delay time clear to Q $\frac{3}{2}$	tPHL1	T _C = +25°C, C _L = 50 pF ± 10%	YCC = 2.0 V YCC = 4.5 V YCC = 6.0 V	9		265 53 45	ns
See figure 4	 	T _C = -55°C, +125°C C _L = 50 pF +10%	Y _{CC} = 2.0 V Y _{CC} = 4.5 V Y _{CC} = 6.0 V	10,11		398 80 68	ns
Propagation delay time load to Q $\frac{3}{2}$ /	t _{PHL2} , t _{PLH2}	T _C = +25°C, C _L = 50 pF * 10%	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	9		290 58 49	ns
See figure 4		 T _C = -55°C, +125°C C _L = 50 pF ±10% 	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	10,11	1	135 87 74	ns
Propagation delay time count up/down to Q <u>3</u> / 	t _{PHL3} , t _{PLH3}	 T _C = +25°C, C _L = 50 pF * 10%	Y _{CC} = 2.0 Y Y _{CC} = 4.5 Y Y _{CC} = 6.0 Y	9	į-	275 55 47	ns
See figure 4	 	 T _C = -55°C, +125°C C _L = 50 pF ±10% 	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	10,11		13 83 71	ns
Propagation delay time count down to borrow or count up to carry 3/	tpHL4, tpLH4	 T _C = +25°C, C _L = 50 pF * 10%	Y _{CC} = 2.0 Y Y _{CC} = 4.5 Y Y _{CC} = 6.0 Y	9	1	.65 33 28	ns
See figure 4	 	T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	10,11	1	50 50 43	ns

See footnotes at end of table.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE CODE IDENT. NO. DWG NO. 5962-8780			7808	3	
		REV	PA	GE 6		

TABLE I	. 1	Electrical	performance	characteristics	_	continued.
	•		P			

Test	Symbol	Conditions	_	Group A	up A Limits Uni			
		-55°C <u><</u> T _C <u><</u> +1	subgroups	Min I M	ax			
Transition time	t _{THL} , t _{TLH}	T _C = +25°C, C _L = 50 pF * 10%	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	9	7 1 1	5		
See figure 4		TT _C = -55°C, +125°C C _L = 50 pF *10%	V _{CC} = 2.0 Y V _{CC} = 4.5 Y V _{CC} = 6.0 Y	10,11	111 2 1	2		

For a power supply of 5 V ± 10 percent the worst case output voltage (V_{OH} and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5$ V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V). The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used. Power dissipation capacitance (C_{PD}), typically 100 pF, determines the no load dynamic power consumption, $P_{D} = C_{PD}$ V_{CC2} f $^+$ I_{CC} $^ V_{CC}$, and the no load dynamic current consumption, $I_{S} = C_{PD}$ V_{CC} f $^+$ I_{CC} .

2/ Test not required if applied as a forcing functon for V_{OH} or V_{OL} .

3/ AC testing at $V_{CC} = 2.0$ V and $V_{CC} = 6.0$ V shall be guaranteed, if not tested, to the specified parameters.

parameters. Transition time (t_{TLH} , t_{THL}), if not tested, shall be guaranteed to the specified parameters.

MILITARY DRAWING **DEFENSE ELECTRONICS SUPPLY CENTER** DAYTON, OHIO

DWG NO. CODE IDENT. NO. SIZE 14933 5962-87808 7 PAGE REV

Cou	ount		 	
Up	Down	T Clear 	 Load 	 Function
	H # X X	 L L H L	 H H X L	 Count up Count down Clear Load

H = High level L = Low level

= Transition from low to high
X = Don't care

FIGURE 2. Truth table.

MILITARY DRAWING	SIZE	14933	DWG NO.	5962-8780	8
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	ELECTRONICS SUPPLY CENTER	PAGE	9		

FIGURE 4. Switching waveforms - Continued.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	DWG NO.	5962-878	308
		REV		PAGE	12

FEB 86

- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review.</u> DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 ($C_{\rm IN}$ measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroup 7 shall be tested sufficiently to verify truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	DWG NO. 5962-87808		
	REV		PAGE 13		

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Ifinal electrical test parameters (method 5004)	1*,2,3,9
Group A test requirements (method 5005)	1,2,3,4,7,9,10,11
Groups C and D end-point electrical parameters (method 5005)	1,2,3,9
Additional electrical subgroups	

^{*}PDA applies to subgroup 1.

- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/66306.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE A	14933	DWG NO. 5962-8780	8
		REV	PAGE	14

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement Imilitary specification part number
5962-8780801EX	27014 18714	 MM54HC192J/883 CD54HC192F/3A	M38510/663068EX
5962-87808012X	27014	 MM54HC192E/883	M38510/66306B2X

 $\frac{\text{Caution.}}{\text{this number may not satisfy the performance requirements of this drawing.}}$

Vendor CAGE number

27014

18714

Vendor name and address

National Semiconductor Corp. 2900 Semiconductor Drive Santa Clara, CA 95051

RCA Solid State Division Route 202 Somerville, NJ 08876

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO

CODE IDENT. NO. SIZE DWG NO. 14933 A 5962-87808 15 REV PAGE