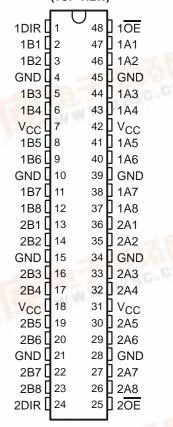
·询"74ALVTH16245DLG4"供应商


SCES066G - JUNE 1996 - REVISED APRIL 2002

- State-of-the-Art Advanced BiCMOS
 Technology (ABT) Widebus™ Design for
 2.5-V and 3.3-V Operation and Low
 Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- High Drive (-32/64 mA at 3.3-V V_{CC})
- I_{off} and Power-Up 3-State Support Hot Insertion
- Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Flow-Through Architecture Facilitates
 Printed Circuit Board Layout
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

description

The 'ALVTH16245 devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

SN54ALVTH16245 . . . WD PACKAGE SN74ALVTH16245 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

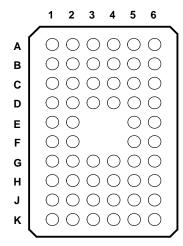
These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.2 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus is a trademark of Texas Instruments.

SN54ALVTH16245, SN74ALVTH16245 2.5-V/3.3-V 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCESTIGGT-JUNE 1996F REMISED APRIL(2002/世 市 高

SN74ALVTH16245 . . . GQL PACKAGE (TOP VIEW)

terminal assignments

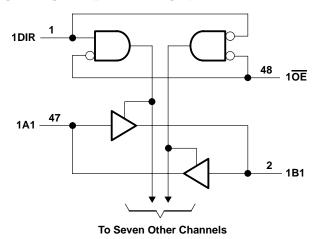
_	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1OE
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	Vcc	Vcc	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
Ε	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
Н	2B5	2B6	Vcc	Vcc	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
ĸ	2DIR	NC	NC	NC	NC	2OE

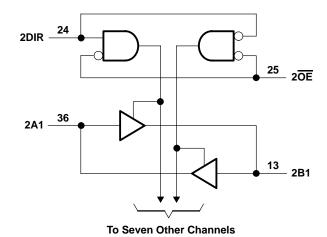
NC - No internal connection

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
4000 to 0500	SSOP – DL	Tape and reel	SN74ALVTH16245DLR	ALVTH16245
	TSSOP – DGG	Tape and reel	SN74ALVTH16245GR	ALVTH16245
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74ALVTH16245VR	VT245
	VFBGA – GQL	Tape and reel	SN74ALVTH16245QR	
–55°C to 125°C	CFP – WD Tube		SNJ54ALVTH16245WD	SNJ54ALVTH16245WD

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


FUNCTION TABLE (each 8-bit section)


INP	UTS	OPERATION				
ŌĒ	DIR	OPERATION				
L	L	B data to A bus				
L	Н	A data to B bus				
Н	X	Isolation				

SCES066G - JUNE 1996 - REVISED APRIL 2002

logic diagram (positive logic)

Pin numbers shown are for the DGG, DGV, DL, and WD packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO (see N	lote 1)0.5 V to 7 V
Output current in the low state, IO: SN54ALVTH16245	96 mA
SN74ALVTH16245	128 mA
Output current in the high state, I _O : SN54ALVTH16245	–48 mA
SN74ALVTH16245	–64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	70°C/W
DGV package	58°C/W
DL package	63°C/W
GQL package	42°C/W
Storage temperature range, T _{Stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN54ALVTH16245, SN74ALVTH16245 2.5-V/3.3-V 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCESOSGGT=JULYE 11996下REMSELDENPHIL(2002/共 市 高

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

				ALVTH1	6245	SN74	ALVTH1	6245	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vcc	Supply voltage	upply voltage			2.7	2.3		2.7	V
VIH	High-level input voltage		1.7		7	1.7			V
V _{IL}	Low-level input voltage			Š	0.7			0.7	V
VI	Input voltage		0	VCC	5.5	0	VCC	5.5	V
loн	High-level output current			1/	-6			-8	mA
la	Low-level output current			2	6			8	mΑ
lOL	Low-level output current; current duty cycle ≤ 5	50%; f ≥ 1 kHz		5	18			24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH1	6245	SN74ALVTH16245		LINUT	
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		3		3.6	3		3.6	V
V_{IH}	High-level input voltage		2		1	2			V
V_{IL}	Low-level input voltage			3	0.8			0.8	V
٧ _I	Input voltage		0	VCC	5.5	0	VCC	5.5	V
ЮН	High-level output current			7	-24			-32	mA
la.	Low-level output current			2	24			32	mA
lOL	Low-level output current; current duty cycle ≤	50%; f ≥ 1 kHz	0.	5	48			64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES066G - JUNE 1996 - REVISED APRIL 2002

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

DAMETED	TEST CONDITIONS		SN54	SN54ALVTH16245		SN74ALVTH16245			UNIT	
RAMETER	lesi co	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII	
	$V_{CC} = 2.3 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V	
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0	.2		V _{CC} -0.	.2			
	Vac = 2.3 V	$I_{OH} = -6 \text{ mA}$	1.8						V	
	vCC = 2.5 v	$I_{OH} = -8 \text{ mA}$				1.8				
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OL} = 100 μA			0.2			0.2		
		$I_{OL} = 6 \text{ mA}$			0.4					
	V00 = 2 3 V	$I_{OL} = 8 \text{ mA}$						0.4	V	
VOL	V(C = 2.5 V	$I_{OL} = 18 \text{ mA}$			0.5					
_		$I_{OL} = 24 \text{ mA}$			4			0.5		
Control inputs	$V_{CC} = 2.7 \text{ V},$	$V_I = V_{CC}$ or GND		3	±1			±1		
Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V		200	10			10		
		V _I = 5.5 V		2	20			20	μΑ	
A or B ports	$V_{CC} = 2.7 \text{ V}$	VI = VCC		5	1			1		
		V _I = 0		5	- 5			– 5		
	$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V	2	ly .				±100	μΑ	
	$V_{CC} = 2.3 \text{ V},$	V _I = 0.7 V		115			115		μΑ	
	$V_{CC} = 2.3 \text{ V},$	V _I = 1.7 V		-10			-10		μΑ	
Ī	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	300			300			μΑ	
#	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	-300			-300			μΑ	
	$V_{CC} = 2.3 \text{ V},$	$V_0 = 5.5 \text{ V}$			125			125	μΑ	
//PD) [☆]	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}} \text{ V}$ V _I = GND or V _{CC} , $\overline{\text{OE}}$ =	to V _{CC} , don't care			±100			±100	μΑ	
	Vcc = 2.7 V.	Outputs high		0.04	0.1		0.04	0.1	mA	
	$I_O = 0$, $V_I = V_{CC}$ or GND	Outputs low		2.3	4.5		2.3	4.5		
		Outputs disabled		0.04	0.1		0.04	0.1		
	V _{CC} = 2.5 V,	V _I = 2.5 V or 0		3.5			3.5		pF	
	V _{CC} = 2.5 V,	V _O = 2.5 V or 0		8			8		pF	
	#	$V_{CC} = 2.3 \text{ V},$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ $V_{CC} = 0 \text{ or } 2.7 \text{ V},$ $V_{CC} = 0 \text{ or } 2.7 \text{ V},$ $V_{CC} = 2.3 \text{ V},$ $V_{CC} = 2.3 \text{ V},$ $V_{CC} = 2.3 \text{ V},$ $V_{CC} = 2.7 \text{ V},$ $V_{CC} = 2.7 \text{ V},$ $V_{CC} = 2.7 \text{ V},$ $V_{CC} = 2.3 \text{ V},$ $V_{CC} = 2.7 \text{ V}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VCC = 2.3 V,	TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 $[\]P$ An external driver must source at least IBHLO to switch this node from low to high.

[#]An external driver must sink at least IBHHO to switch this node from high to low.

Current into an output in the high state when VO > VCC

^{*}High-impedance state during power up or power down

SN54ALVTH16245, SN74ALVTH16245 2.5-V/3.3-V 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCESTIGGT-JUNE 1996下REMISEDIAPRIL(2002/生 小 商

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

DA.	DAMETER	TEST O	ONDITIONS	SN54	ALVTH1	6245	SN74	ALVTH1	6245	LINUT	
PA	RAMETER	IESI C	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
٧ıĸ		$V_{CC} = 3 V$,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	2		V _{CC} -0.	2			
Vон		V _{CC} = 3 V	$I_{OH} = -24 \text{ mA}$	2						V	
		VCC = 3 V	$I_{OH} = -32 \text{ mA}$				2				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	$I_{OL} = 100 \mu A$			0.2			0.2		
			I _{OL} = 16 mA						0.4		
\/o:			I _{OL} = 24 mA			0.5				V	
VOL		V _{CC} = 3 V	$I_{OL} = 32 \text{ mA}$						0.5	V	
			$I_{OL} = 48 \text{ mA}$			0.55					
			$I_{OL} = 64 \text{ mA}$			2			0.55		
	Control inputs	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND		Š	±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V		PA	10			10		
Ц			V _I = 5.5 V		7	20			20	μΑ	
	A or B ports	B ports $V_{CC} = 3.6 \text{ V}$	VI = VCC		2	1			1		
			V _I = 0		3	- 5			- 5		
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V	Q					±100	μΑ	
I _{BHL} ‡		V _{CC} = 3 V,	V _I = 0.8 V	75			75			μΑ	
I _{BHH} §		V _{CC} = 3 V,	V _I = 2 V	-75			-75			μΑ	
IBHLO	Ī	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	500			500			μΑ	
І _{ВННО}	#	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	-500			-500			μΑ	
_{IEX}		V _{CC} = 3 V,	V _O = 5.5 V			125			125	μΑ	
l _{OZ(PU}	//PD) [*]	$V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5} \text{ V}$ $V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} = \underline{0.5} \text{ V}$	V to V _{CC} , = don't care			±100			±100	μΑ	
		V _{CC} = 3.6 V,	Outputs high		0.07	0.1		0.07	0.1		
Icc		$I_{O} = 0$,	Outputs low		3.2	5		3.2	5	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.07	0.1		0.07	0.1		
ΔICC		$V_{CC} = 3 \text{ V to } 3.6 \text{ V, One}$ Other inputs at V_{CC} or				0.2			0.2	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0		3.5			3.5		pF	
C _{io}		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		8			8		pF	
† A II 4:: a	-1	/cc = 3 3 V T _A = 25°C	:	•	-		•				

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡]The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 $[\]P$ An external driver must source at least IBHLO to switch this node from low to high.

[#] An external driver must sink at least I_{BHHO} to switch this node from high to low.

Current into an output in the high state when V_O > V_{CC}

^{*}High-impedance state during power up or power down

 $[\]Box$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES066G - JUNE 1996 - REVISED APRIL 2002

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALVTH16245		SN74AL\	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
^t PLH	A or B	B or A	0.5	3.6	0.5	3.6	ns
^t PHL	AOIB		0.5	3.4	0.5	3.4	115
^t PZH	ŌĒ	A or B	1.5	4.9	1.5	4.9	nc
^t PZL	OE	AUD	1.5	4	1	4	ns
^t PHZ	ŌĒ	A or B	1.5	4.9	1.5	4.9	ns
t _{PLZ}	OE .		29	4.2	1	4.2	115

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	SN54ALVTH16245		SN74AL\	UNIT	
PARAMETER	(INPUT)		MIN	MAX	MIN	MAX	UNII
t _{PLH}	A or B	B or A	0.5	3.1	0.5	3.1	ns
t _{PHL}	AUID		0.5	2.9	0.5	2.9	
^t PZH	ŌĒ	A D	1	4.2	1	4.2	nc
t _{PZL}	OE .	A or B	1.5	3.5	1	3.5	ns
^t PHZ	ŌĒ	A or B	1.5	5.3	1.5	5.3	ns
t _{PLZ}			1.5	5	1.5	5	113

skew

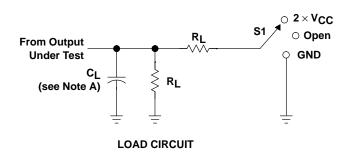
 t_{ns} (pin or transition skew), $t_{ps} = |t_{PHL} - t_{PHL}|$

PO :: 1112 1112:			
	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
	TYP	TYP	ONIT
t _{ps} max	438	118	ps

t_{OST} = $|t_{p\Phi m} - t_{p\Phi n}|$, where Φ is any edge transition (high to low or low to high) measured between any two outputs (m or n) within any given device (see Note 4)

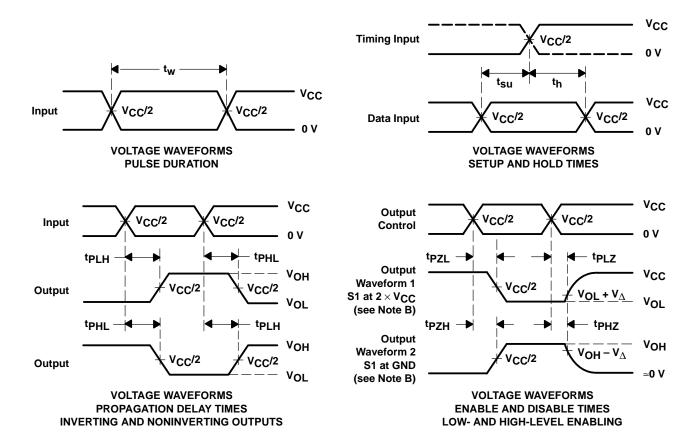
		V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
		TYP	TYP	UNII	
4	A–B	227	248	no	
tost	B–A	223	243	ps	

NOTE 4: One output switching, T_A = 25°C


$t_{OSLH}/t_{OSLH} (common edge skew), t_{OSHL} = |t_{PHL}max - t_{PHL}min| (output skew for low-to-high transitions), and t_{OSLH} = |t_{PLH}max - t_{PLH}min| (output skew for high-to-low transitions) (see Note 4)$

		V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
		TYP	TYP	UNIT
^t OSLH	A D	210	145	20
^t OSHL	A-B	243	351	ps
^t OSLH	B-A	207	136	no
t _{OSHL}	D-A	238	350	ps

NOTE 4: One output switching, $T_A = 25^{\circ}C$



PARAMETER MEASUREMENT INFORMATION

TEST	S 1
tPLH/tPHL	Open
t _{PLZ} /t _{PZL}	2×V _{CC}
tPHZ/tPZH	GND

VCC	CL	RL	$v_{\scriptscriptstyle\Delta}$
2.5 V ±0.2 V	30 pF	500 Ω	0.15 V
3.3 V ±0.3 V	50 pF	500 Ω	0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{f} \leq$ 2 ns. $t_{f} \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74ALVTH16245DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245GRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245VRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245ZQLR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SN74ALVTH16245DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALVTH16245DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALVTH16245GR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALVTH16245KR	ACTIVE	BGA MI CROSTA R JUNI OR	GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74ALVTH16245VR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

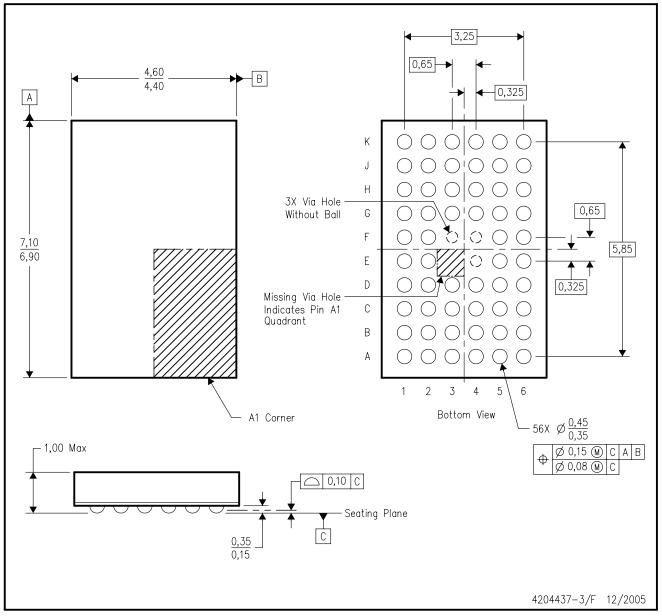
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


PACKAGE OPTION ADDENDUM

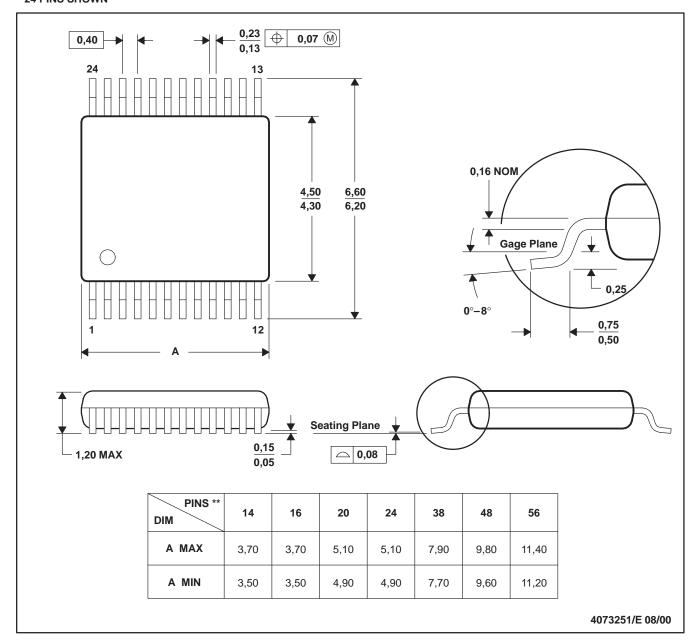
6-Dec-2006

In no event shall TI's liability arising out of such	information exceed the total purcha	ase price of the TI part(s) at issue in	n this document sold by TI
In no event shall TI's liability arising out of such to Customer on an annual basis.	miomation oxogod the total parent	acception of the 11 part(o) at local in	Time decament seta by Ti

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

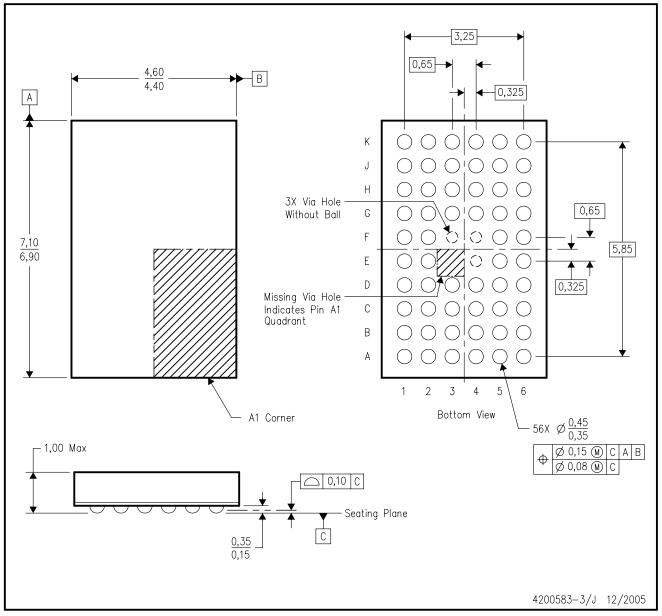

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

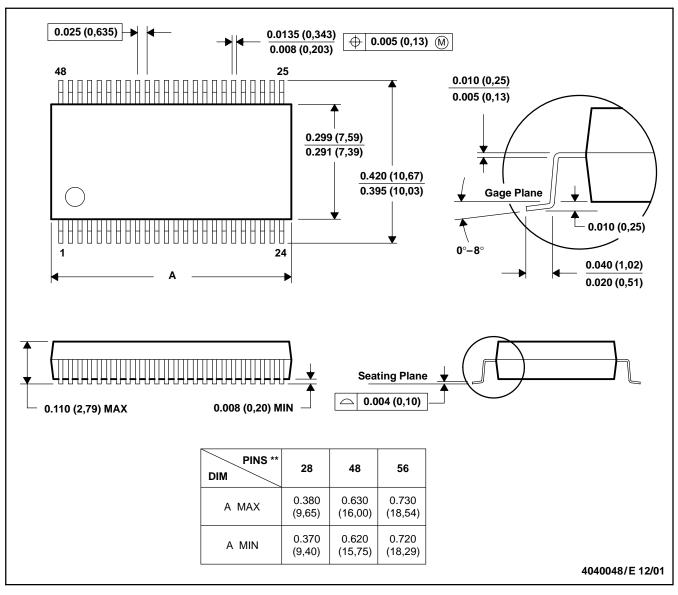
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

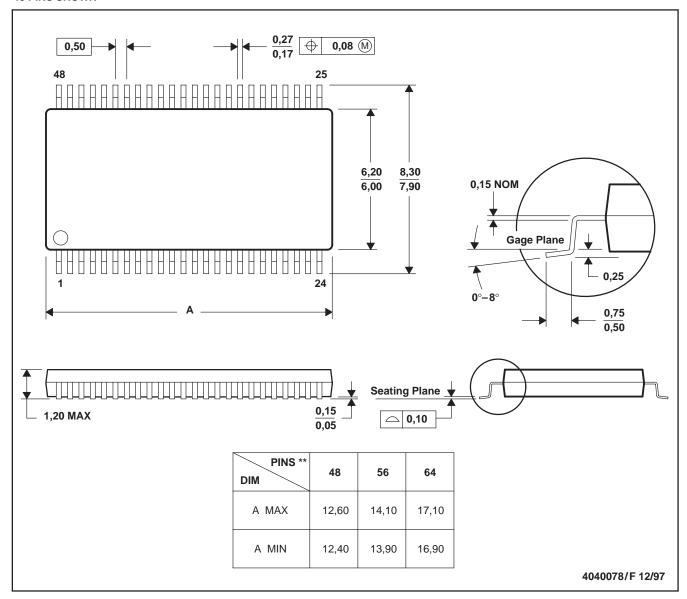
DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

30-Mar-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
74ALVTH16245DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245GRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245VRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ALVTH16245ZQLR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SN74ALVTH16245DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALVTH16245DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALVTH16245GR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALVTH16245KR	NRND	BGA MI CROSTA R JUNI OR	GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74ALVTH16245VR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

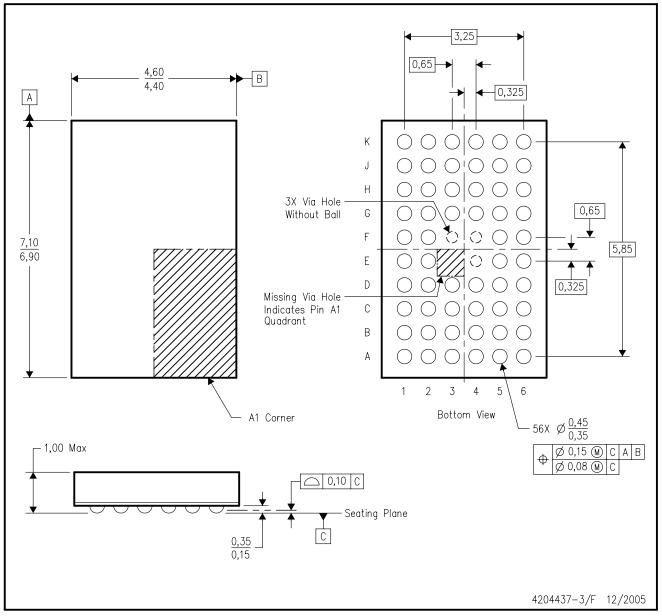
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


PACKAGE OPTION ADDENDUM

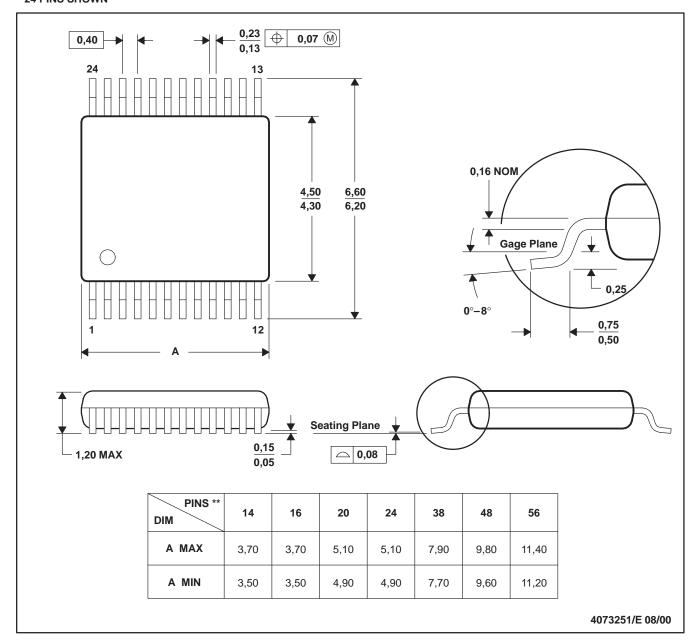
30-Mar-2007

In no event shall TI's liability arisin to Customer on an annual basis.	g out of such information exce	ed the total purchase pric	ee of the TI part(s) at issu	ue in this document sold by Tl

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

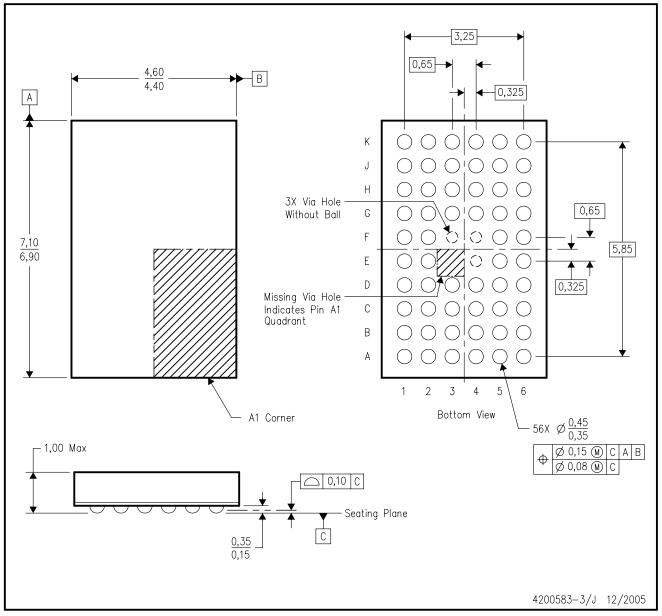

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

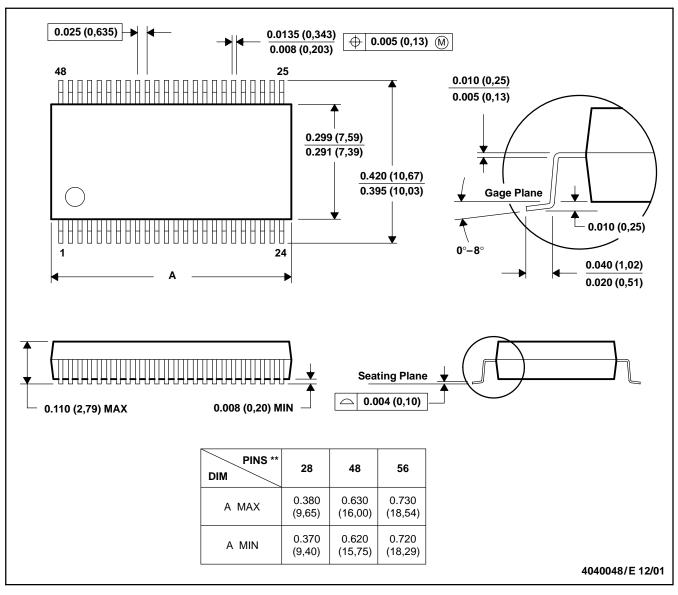
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

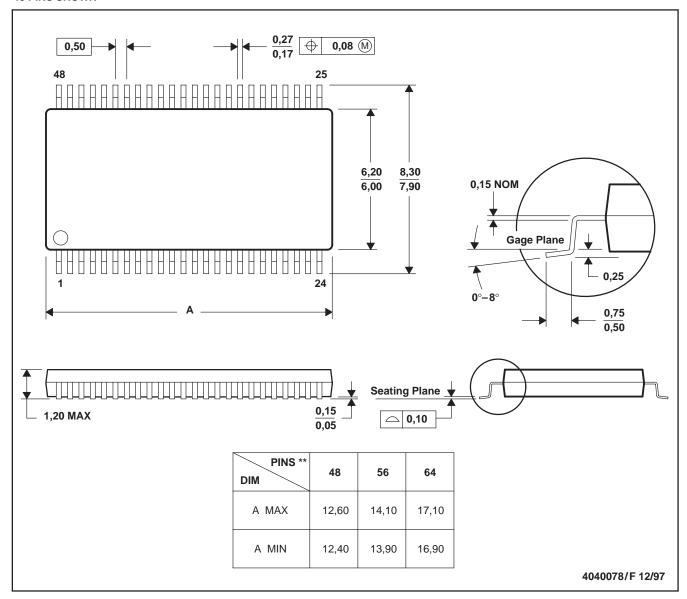
DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated