Non-Inverting 3-State Buffer

The NLX1G125 is an advanced high-speed 2-input CMOS non-inverting 3-state buffer in ultra-small footprint.

The NLX1G125 input structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{PD} = 2.7 \text{ ns (Typ)} @ V_{CC} = 5.0 \text{ V}$
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Low Power Dissipation: $I_{CC} = 1 \mu A \text{ (Max)}$ at $T_A = 25^{\circ}\text{C}$
- 24 mA Balanced Output Source and Sink Capability
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input Pins
- Ultra-Small Packages
- These are Pb-Free Devices

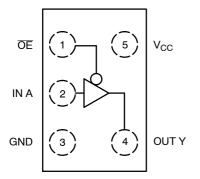


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

5 PIN FLIP-CHIP CASE 499BG

XXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week

PIN ASSIGNMENT			
1 ŌE			
2	IN A		
3	GND		
4	OUT Y		
5	V _{CC}		

FUNCTION TABLE

A Input	OE Input	Y Output
L	L	L
Н	L	Н
X	Н	Z

X = Don't Care

1

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

查询MVLMXPATINGSCT1G"供应商

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	-0.5 to +7.0	V
I _{IK}	DC Input Diode Current V _{IN} < GN	D –50	mA
lok	DC Output Diode Current V _{OUT} < GN	D –50	mA
I _{OUT}	DC Output Sink Current	±50	mA
I _{CC}	DC Supply Current per Supply Pin	±100	mA
I _{GND}	DC Ground Current per Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	TBD	°C
TJ	Junction Temperature Under Bias	TBD	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 1)	TBD	°C/W
P_{D}	Power Dissipation in Still Air at 85°C	TBD	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 3	34 UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Model (Note: Machine Model (Note: Charged Device Mod	> 200	V
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GND at 125 °C (Note 5)) ±500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace with no air flow.

- 2. Tested to EIA/JESD22-A114-A.
- Tested to EIA/JESD22-A115-A.
 Tested to JESD22-C101-A.
- 5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parame	ter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	Operating Data Retention Only	1.65 1.5	5.5 5.5	V
V _{IN}	Digital Input Voltage (Note 6)		0	5.5	V
V _{OUT}	Output Voltage		0	5.5	V
T _A	Operating Free-Air Temperature		-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V} \\ V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V} \\ V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0 0 0	20 20 10 5.0	ns/V

6. Unused inputs may not be left open. All inputs must be tied to a high or low-logic input voltage level.

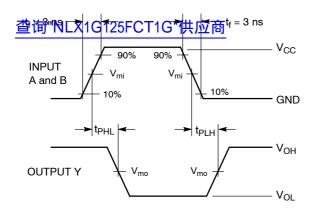
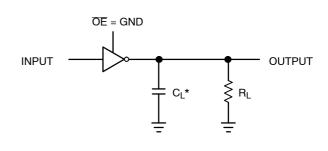
29GENECTRICALS CHARACTERISTICS

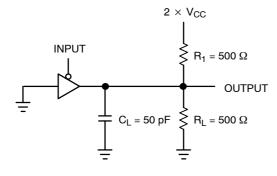
			V _{CC}	T _A = 25 °C		С	T _A = -55°C	to +125°C	
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	Low-Level		1.65	0.75 x V _{CC}			0.75 x V _{CC}		٧
	Input Voltage		2.3 to 5.5	0.70 x V _{CC}			0.70 x V _{CC}		
V _{IL}	Low-Level		1.65			0.25 x V _{CC}		0.25 x V _{CC}	V
	Input Voltage		2.3 – 5.5			0.30 x V _{CC}		0.30 x V _{CC}]
V _{OH}	High- Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -100 \mu A$	1.65 – 5.5	V _{CC} -0.1	V _{CC}		V _{CC} -0.1		V
	Voltage	$\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OH} = -4 \text{ mA} \\ &I_{OH} = -8 \text{ mA} \\ &I_{OH} = -12 \text{ mA} \\ &I_{OH} = -16 \text{ mA} \\ &I_{OH} = -24 \text{ mA} \\ &I_{OH} = -32 \text{ mA} \end{aligned}$	1.65 2.3 2.7 3.0 3.0 4.5	1.29 1.9 2.2 2.4 2.3 3.8	1.52 2.15 2.4 2.8 2.68 4.2		1.29 1.9 2.2 2.4 2.3 3.8		
V _{OL}	Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 100 \mu A$	1.65 – 5.5			0.1		0.1	V
	voltage	V _{IN} = V _{IH} or V _{IL} I _{OH} = 4 mA I _{OH} = 8 mA I _{OH} = 12 mA I _{OH} = 16 mA I _{OH} = 24 mA I _{OH} = 32 mA	1.65 2.3 2.7 3.0 3.0 4.5		0.08 0.1 0.12 0.15 0.22 0.22	0.24 0.3 0.4 0.4 0.55 0.55		0.24 0.3 0.4 0.4 0.55 0.55	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5V$	0 to 5.5			±0.1		±1.0	μΑ
I _{OZ}	3-State Output Leakage Current	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $0 \le V_{OUT} \le 5.5V$	0			±0.5		±5.0	μΑ
I _{OFF}	Power-Off Output Leakage Current	V _{IN} = 5.5 V	0			1.0		10	μΑ
I _{CC}	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		10	μΑ

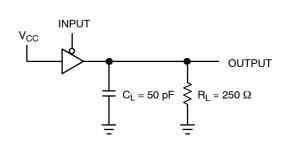
\blacksquare GENECTRICALS CHARACTERISTICS (Input $t_r = t_f = 2.5 \text{ ns}$)

		V _{CC}	Test	7	T _A = 25 °C	;	T _A = -5 +12		
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	1.65–1.95	$R_L = 1 M\Omega$, $C_L = 15 pF$	2.0	6.0	10	2.0	10.5	ns
t _{PHL}	Input to Output (Figures 3 and 4,	2.3-2.7	$R_L = 1 M\Omega$, $C_L = 15 pF$	1.0	3.4	7.5	1.0	8.0	
	Table 1)	3.0-3.6	$R_L = 1 M\Omega$, $C_L = 15 pF$	0.8	2.5	5.2	0.8	5.5	
			$R_L = 500 \Omega, C_L = 50 pF$	1.2	3.1	5.7	1.2	6.0	
		4.5-5.5	$R_L = 1 M\Omega$, $C_L = 15 pF$	0.5	1.8	4.5	0.5	4.8	
			$R_L = 500 \Omega, C_L = 50 pF$	0.8	2.3	5.0	0.8	5.3	
t _{PZH} ,	Output Enable Time	1.65–1.95	$R_L = 250 \Omega, C_L = 50 pF$	2.0	7.6	9.5	2.0	10	ns
t _{PZL}	(Figures 5, 6and 7, Table 1)	2.3-2.7		1.8		8.5	1.8	9.0	
		3.0-3.6		1.2		6.2	1.2	6.5	
		4.5-5.5		0.8		5.5	0.8	5.8	
t _{PHZ} ,	Output Disable Time	1.65–1.95	$R_L = R_1 = 5-0 \Omega$,	2.0	8.0	10	2.0	10.5	ns
t _{PLZ}	(Figures 5, 6and 7, Table 1)	2.3-2.7	C _L = 50 pF	1.5		8.0	1.5	8.5	
		3.0-3.6		0.8		5.7	0.8	6.0	
		4.5-5.5		0.3		4.7	0.3	5.0	
C _{IN}	Input Capacitance	5.5	V _{IN} = 0 V or V _{CC}		2.5				pF
C _{OUT}	Output Capacitance	5.5	V _{IN} = 0 V or V _{CC}		2.5				pF
C _{PD}	Power Dissipation Capacitance (Note 7)	3.3 5.5	$\begin{array}{c} 10 \text{ MHz} \\ V_{IN} = 0 \text{ V or } V_{CC} \end{array}$		9.0 11				pF

^{7.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.


Figure 3. Switching Waveform


*Includes all probe and jig capacitance.

A 1 MHz square input wave is recommended for propagation delay tests.

Figure 4. T_{PLH} or T_{PHL}

A 1 MHz square input wave is recommended for propagation delay tests.

A 1 MHz square input wave is recommended for propagation delay tests.

Figure 5. T_{PZL} or T_{PL}

Figure 6. T_{PZH} or T_{PHZ}

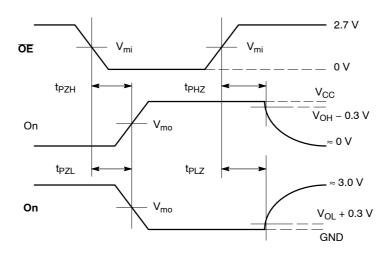


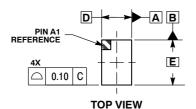
Figure 7. AC Output Enable and Disable Waveform

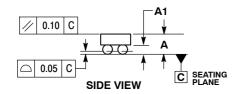
Table 1. OUTPUT ENABLE AND DISABLE TIMES

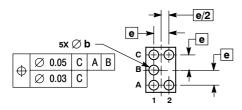
 t_R = t_F = 2.5 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

	V _{CC}		
Symbol	3.3 V ± 0.3 V	2.7 V	2.5 V ± 0.2 V
V_{mi}	1.5 V	1.5 V	V _{CC/} 2
V _{mo}	1.5 V	1.5 V	V _{CC/} 2

ZEVICE ORDERING INFORMATIONS

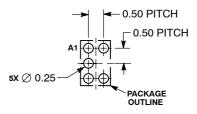

Device	Package	Shipping [†]
NLX1G125FCT1G	Flip-Chip 5 (Pb-Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


查询"NLX1G125FCT1G"供应商

PACKAGE DIMENSIONS

5 PIN FLIP-CHIP CASE 499BG-01 **ISSUE 0**



BOTTOM VIEW

- DIMENSIONING AND TOLERANCING PER DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. COPLANARITY APPLIES TO SPHERICAL
- CROWNS OF SOLDER BALLS.

	MILLIMETERS			
DIM	MIN MAX			
Α	0.44	0.50		
A1	0.15	0.19		
b	0.21	0.25		
D	0.90 BSC			
Е	1.40 BSC			
е	0.50 BSC			

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and water legistered traderlanks of semiconductor Components industries, ILC (SCILLC). SciLLC reserves are right to finate changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifically oxyr over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative