| | | | | | | | | | TE VISI | ONS | | | | | | | | | | | |--|---|--|------|-------------------------|----------------------|----------------------------------|---------------------------------|----------------|----------|----------------------------------|-----------------------------|---------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------|---|--|-----------------|------| | L暨询"5962-9674801Q3A"供应商PESCRIPTION | | | | | | | | | D/ | DATE (YR-MO-DA) | | | | APPROVED | | | | | | | | <u></u>
A | | Change test conditions in Note 2 of Figure 5 JAK | | | | | | | | | | 96-06-14 M | | | Monica L. Poelking | | | | | | | В | Change the values of V_{CC} for the ground bounce noise tests from 3.0 V to 3.3 V CFS | | | | | tests | | | | | 97-0 |)4-24 | | Monica L. Poelking | | | | | | | | С | Change the device name to reflect the Bus Hold feature, and characterize the performance of the optimized die. Editorial cl CFS | | | | | | | | out. | 99-02-17 | | | Monica L. Poelking | | ing | | | | | | | D | | | | | | | | | | or the gr
e CF | | | | 99-0 | 3-19 | | N | lonica l | Poelk | ing | REV | SHEET | SHEET | С | С | C | C | С | C | | | | | | | | | | | | | | | | SHEET
REV
SHEET | C 15 | C 16 | C 17 | 18 | 19 | C 20 | | | | | | | | | | | | | | | | SHEET REV SHEET REV STATUS | | | | 18
REV | 19 | | D 1 | C | C | C | C | D | C | D | C | C 10 | C C | C 12 | C 13 | C 14 | | SHEET REV SHEET REV STATUS OF SHEETS | | | | 18
REV
SHE | 19
′
ET | 20 | D 1 | C 2 | C 3 | C 4 | C 5 | D 6 | C 7 | D 8 | C 9 | C 10 | C 11 | C 12 | C 13 | C 14 | | SHEET REV SHEET REV STATUS | | | | 18
REV
SHE | 19
'EET
PARED | 20
) BY | <u> </u> | 2 | <u> </u> | | 5 | 6 | | 8 | 9 | 10 | 11 | 12 | 13 | | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN | 15
NDAF | 16 | | 18
REV
SHE
PRE | 19 EET PARED CKED | 20
D BY
loseph | 1 | 2
by | <u> </u> | | 5 | 6
FEN | 7 | 8
JPPL | 9
Y CE | 10
NTEF | 11 | 12
LUMB | 13 | | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN | NDAF
OCIRC
WING
IG IS A
SE BY A
RTMEN
ICIES C | RD
CUIT
G
VAILAR
ALL
ITS
OF THE | 17 | 18 REV SHE PRE | 19 CKED T ROVEI | 20 D BY D BY D BY Onica L | 1
A. Kert | 2
en
ing | <u> </u> | MIC
CM(
REC
OU | DE
ROC
OS, 3
GISTE | IRCU
.3-VC | 7
SE SI
COLI
IT, DI
DLT O | JPPL
UMBI
GITA
CTAL
US H | y CE
JS, O
L, AD
BUS
OLD, | NTEF
OHIO | 11
R COL
43216
CED E
NSCE
EE-S | UMB6 | 13 EUS AR R AND | 14 | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO DRA THIS DRAWIN FOR US DEPAR AND AGEN DEPARTMEN | NDAF
OCIRC
WING
IG IS A
SE BY A
RTMEN
ICIES C | RD
CUIT
G
VAILAR
ALL
ITS
OF THE
DEFEN | 17 | 18 REV SHE PRE CHE | 19 CKED T ROVEI | 20 D BY D BY Onica L APPRO 96-0 | A. Kerk /. Nguy Poelk DVAL E | 2
en
ing | <u> </u> | MIC
CM6
REC
OUT
SILI | DE
POC
SS, 3
GISTE | IRCU
.3-VC
ER WI
S, TT | 7
SE SI
COLI
IT, DI
DLT O | JPPL
UMBI
GITA
CTAL
US H | y CE
JS, O
L, AD
BUS
OLD, | NTEF
OHIO
OVANG
TRA
THR | 11
R COL
43216
CED E
NSCE
EE-S | J12
LUMB
6
BIPOL
EIVEF
TATE
MONG | AR
AND | 14 | DSCC FORM 2233 APR 97 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 5962-E187-99 20 ## 1. SCOPE 面影: Case Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. 1.2 PIN. The PIN is as shown in the following example: - 1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 Device type(s). The device type(s) identify the circuit function as follows: | Device type | Generic number | Circuit function | | | |-------------|----------------|---|--|--| | 01 | 54LVTH646 | 3.3-volt octal bus transceiver and register with bus hold, three-state outputs, TTL compatible inputs | | | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows: | Device class | Device requirements documentation | |--------------|---| | М | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A | | Q or V | Certification and qualification to MIL-PRF-38535 | 1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|---------------------| | K | GDFP2-F24 or CDFP3-F24 | 24 | Flat pack | | L | GDIP3-T24 or CDIP4-T24 | 24 | Dual-in-line | | 3 | CQCC1-N28 | 28 | Square chip carrier | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 2 | # 1.3 Absolute maximum ratings. 1/2/3/ | 查询\$5962-26624804Q3人以供应商 | -0.5 V dc to +4.6 V dc | |---|---------------------------| | DC input voltage range (V _{IN}) | | | DC output voltage range (high state or power-off state) (Vout) | -0.5 V dc to +7.0 V dc 4/ | | DC input clamp current (I _{IK}) (V _{IN} < 0.0 V) | -50 mA | | DC output clamp current (I _{OK}) (V _{OUT} < 0.0 V) | 50 mA | | DC output current (I _{OL}) (per output) | . +96 mA | | DC output current (I _{OH}) (per output) | . +48 m A | | Maximum Power Dissipation at T _A = 55°C (in still air) (P _D) | . 262 mW <u>5</u> / | | Storage temperature range (T _{STG}) | -65°C to +150°C | | Lead temperature (soldering, 10 seconds) | +300°C | | Thermal resistance, junction-to-case (θ_{JC}) | | | Junction temperature (T _J) | | ## 1.4 Recommended operating conditions. 2/3/ | Supply voltage range (V _{CC}) | . +2.7 V dc to +3.6 V dc | |---|--------------------------| | Input voltage range (V _{IN}) | | | Output voltage range (V _{OUT}) | . +0.0 V dc to +5.5 V dc | | Minimum high level input voltage (V _H) | . +2.0 V dc | | Maximum low level input voltage (V _{IL}) | . +0.8 V dc | | Maximum high level output current (I _{OH}) | 24 m A | | Maximum low level output current (I _{OL}) | . +48 mA | | Maximum input rise or fall rate (outputs enabled) (Δt/Δv) | . 10 ns/V | | Case operating temperature range (T _C) | | Power dissipation values are derived using the formula $P_D = V_{CC}I_{CC} + nV_{OL}I_{OL}$, where V_{CC} and I_{OL} are as specified in 1.4 <u>5</u>/ above, I_{CC} and V_{OL} are as specified in table I herein, and n represents the total number of outputs. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 3 | DSCC FORM 2234 APR 97 Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the <u>1</u>/ maximum levels may degrade performance and affect reliability. Unless otherwise noted, all voltages are referenced to GND. <u>2</u>/ <u>3</u>/ The limits for the parameters specified herein shall apply over the full specified V_{CC} range and case temperature range of -55°C to +125°C. <u>4</u>/ The input and output negative voltage ratings may be exceeded provided that the input and output clamp current ratings are observed. ## 2. APPLICABLE DOCUMENTS part of this drawing to the extent specified herein. Unless otherwise specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation. ## **SPECIFICATION** #### DEPARTMENT OF DEFENSE MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. ## **STANDARDS** #### DEPARTMENT OF DEFENSE MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-973 - Configuration Management.
MIL-STD-1835 - Interface Standard For Microcircuit Case Outlines. #### **HANDBOOKS** ## DEPARTMENT OF DEFENSE MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's). MIL-HDBK-780 - Standard Microcircuit Drawings. (Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ## 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M - 3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 Truth table. The truth table shall be as specified on figure 2. - 3.2.4 Logic diagram. The block or logic diagram shall be as specified on figure 3. - 3.2.5 Ground bounce load circuit and waveforms. The ground bounce load circuit and waveforms shall be as specified on figure 4. - 3.2.6 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 5. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 4 | DSCC FORM 2234 APR 97 3.2.7 Radiation exposure circuit. The radiation exposure circuit shall be as specified when available. Exit Isaa 967/48/14 Action to and postirradiation parameter limits. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973. - 3.9 <u>Verification and review for device class M.</u> For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 126 (see MIL-PRF-38535, appendix A). | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 5 | | | | TABLE I. Electrical performa | ance chara | cteristics | <u>.</u> | | | | |---|------------------------------|--|----------------|-----------------------|-------------------|-----------------------|----------------|------| | 查询 <mark>"5962-9674</mark>
MIL-STD-883
test method <u>1</u> / | 10 <u>1,038</u> 1 | <mark>共 应 商</mark> Test conditions $2/$ -55°C \leq T _C \leq +125°C +2.7 V \leq V _{CC} \leq +3.6 V unless otherwise specified | Device
type | V _{cc} | Group A subgroups | Limi | its <u>3</u> / | Unit | | | | | | | | Min | Max | | | Negative input
clamp voltage
3022 | V _{IC} | For input under test, $I_{IN} = -18 \text{ mA}$ | All | 2.7 V | 1,2,3 | | -1.2 | V | | High level output
voltage
3006 | V _{OH1} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OH}} = -100 \ \mu\text{A}$ | All | 2.7 V
and
3.6 V | 1,2,3 | V _{CC} – 0.2 | | V | | | V _{OH2} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OH}} = -8 \text{ mA}$ | All | 2.7 V | 1,2,3 | 2.4 | | | | | V _{OH3} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OH}} = -24 \text{ mA}$ | All | 3.0 V | 1,2,3 | 2.0 | | | | Low level output
voltage
3007 | V _{OL1} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OL}} = 100 \ \mu\text{A}$ | All | 2.7 V | 1,2,3 | | 0.2 | V | | | V _{OL2} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OL}} = 24 \text{ mA}$ | All | 2.7 V | 1,2,3 | | 0.5 | | | | V _{OL3} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OL}} = 16 \text{ mA}$ | All | 3.0 V | 1,2,3 | | 0.4 | | | | V _{OL4} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OL}} = 32 \text{ mA}$ | All | 3.0 V | 1,2,3 | | 0.5 | | | | V _{OL5} | For all inputs affecting output under test, $V_{\text{IN}} = 2.0 \text{ V}$ or 0.8 V $I_{\text{OL}} = 48 \text{ mA}$ | All | 3.0 V | 1,2,3 | | 0.55 | | | Input current high
3010 | I _⊪
<u>4</u> / | Control pins
For input under test, $V_{IN} = 5.5 \text{ V}$ | All | 0.0 V
and
3.6 V | 1,2,3 | | 10.0 | μА | | | | Control pins For input under test, $V_{\text{IN}} = V_{\text{CC}}$ | All | 3.6 V | 1,2,3 | | 1.0 | | | | | A or B ports
For input under test, V _{IN} = 5.5 V
Unused pins at VCC or GND | All | 3.6 V | 1,2,3 | | 20.0 | | | | | A or B ports For input under test, $V_{IN} = V_{CC}$ Unused pins at V_{CC} or GND | All | 3.6 V | 1,2,3 | | 1.0 | | See footnotes at end of table. | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-96748 | |--|------------------|---------------------|------------| | | | REVISION LEVEL
D | SHEET 6 | | | | TABLE I. Electrical performance | characteris | stics – Co | ontinued. | | | | |--|---|--|----------------|-----------------------|-------------------|-------|----------------|------| | 查询"5962d967480\$QQ&d"
MIL-STD-883
test method <u>1</u> / | | 共应商 Test conditions $\frac{2}{-55^{\circ}C} \le T_{C} \le +125^{\circ}C$
+2.7 V $\le V_{CC} \le +3.6$ V
unless otherwise specified | Device
type | V _{CC} | Group A subgroups | Lim | its <u>3</u> / | Unit | | | | | | | | Min | Max | | | Input current low
3009 | I _{IL}
<u>4</u> / | Control pins For input under test, $V_{IN} = GND$ Unused pins at V_{CC} or GND | All | 3.6 V | 1,2,3 | | -1.0 | μА | | | | A or B ports
For input under test, $V_{IN} = 0.0 \text{
V}$
Unused pins at V_{CC} or GND | All | 3.6 V | 1,2,3 | | -5.0 | | | Input bus hold current | I _{HOLD} | A or B ports
V _{IN} = 0.8 V | All | 3.0 V | 1,2,3 | 75.0 | | μА | | | | A or B ports
V _{IN} = 2.0 V | | | | -75.0 | | | | Three-state output current, power-up 3020 | I _{OZPU} <u>5</u> / <u>6</u> / | $\frac{V_{OUT}}{OE} = 0.5 \text{ V to } 3.0 \text{ V}$ | All | 0.0 V
and
1.5 V | 1,2,3 | | ±100.0 | μА | | Three-state output current, power-down 3020 | I _{OZPD} 5/6/ | $\frac{V_{OUT}}{OE} = 0.5 \text{ V to } 3.0 \text{ V}$ | All | 1.5 V
and
0.0 V | 1,2,3 | | ±100.0 | μА | | Quiescent supply current, output high 3005 | Іссн | $V_{\text{IN}} = V_{\text{CC}}$ or GND $I_{\text{OUT}} = 0.0 \text{ A}$ | All | 3.6 V | 1,2,3 | | 0.19 | mA | | Quiescent supply current, output low 3005 | tuiescent supply current, output I_{CCL} $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0.0 \text{ A}$ | | All | 3.6 V | 1,2,3 | | 5.0 | | | Quiescent supply
current, output
disabled
3005 | I _{CCZ} | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0.0$ A | All | 3.6 V | 1,2,3 | | 0.19 | | | Quiescent supply
current delta,
TTL input levels
3005 | Δl _{cc} <u>7</u> / | For input under test $V_{IN} = V_{CC} - 0.6 \text{ V}$ For all other inputs $V_{IN} = V_{CC}$ or GND | All | 3.0 V
and
3.6 V | 1,2,3 | | 0.2 | mA | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 7 | | | | TABLE I. <u>Electrical performan</u> | ice characteris | <u>tics</u> - Cor | ntinued. | | | | |--|-----------------------------|--|------------------|-----------------------|----------------------|-----|-----------------|------| | 查询"5962-96748
MIL-STD-883
test method 1/ | 01Q3A"1 | 大 <mark>沙</mark> 商 Test conditions $2/$ -55°C \leq T _C \leq +125°C +2.7 V \leq V _{CC} \leq +3.6 V unless otherwise specified | Device
type | V _{CC} | Group A
subgroups | Lin | nits <u>3</u> / | Unit | | | | | | | | Min | Max | | | Low level ground bounce noise | V _{OLP} <u>8</u> / | $V_{IH} = 2.7 \text{ V}, V_{IL} = 0.0 \text{ V}$
$T_A = +25^{\circ}\text{C}$ | All | 3.0 V | 4 | | 650 | mV | | Low level ground bounce noise | V _{OLV} <u>8</u> / | See figure 4
See 4.4.1d | All | 3.0 V | 4 | | -650 | | | High level V _{CC} bounce noise | V _{OHP} <u>8</u> / | | All | 3.0 V | 4 | | 900 | | | High level V _{CC} bounce noise | V _{OHV} <u>8</u> / | | All | 3.0 V | 4 | | -1600 | | | Input capacitance
3012 | C _{IN} | $T_{\rm C}$ = +25°C, See 4.4.1c $V_{\rm IN}$ = 3.0 V or 0.0 V | All | 3.0 V | 4 | | 13.5 | pF | | I/O capacitance
3012 | C _{I/O} | T _C = +25°C, See 4.4.1c
V _{OUT} = 3.0 V or 0.0 V | All | 3.0 V | 4 | | 20.0 | | | Functional test
3014 | 9/ | V_{IN} = 0.4 V or 2.4 V
Verify output V_{OUT}
See 4.4.1b | All | 2.7 V
and
3.6 V | 7,8 | L | Н | | | Clock frequency | f _{clock} | $R_{\perp} = 500\Omega$ | | 3.0 V
and
3.6 V | 9,10,11 | 0 | 150 | MHz | | Pulse duration,
high or low, | t _w | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | 3.3 | | ns | | CLKAB or CLKBA | | See figure 5 | | 3.0 V
and
3.6 V | | 3.3 | | | | Setup time, high,
An before | t _{s1} | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | 1.6 | | ns | | CLKAB↑ or Bn
before CLKBA↑ | | See figure 5 | | 3.0 V
and
3.6 V | | 1.3 | | | | Setup time, low,
An before | t _{s2} | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | 2.6 | | ns | | CLKAB↑ or Bn
before CLKBA↑ | | See figure 5 | | 3.0 V
and
3.6 V | | 1.9 | | | | Hold time, high or low, An after | t _h | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | 1.2 | | ns | | CLKAB↑ or Bn
after CLKBA↑ | | See figure 5 | | 3.0 V
and
3.6 V | | 1.2 | | | | See footnotes at end o | f table. | | • | | | | | | | | STANDA
CIRCUIT | ARD
DRAWING | SIZE
A | | | | 5962-9 | 6748 | | | | NTER COLUMBUS
0 43216-5000 | | REVI | SION LEVEL
D | | SHEET | 8 | | 查询"5962-967480
MIL-STD-883
test method <u>1</u> / | 01 Symb.017 | 上述的 Test conditions $2/$ $-55^{\circ}C \le T_{C} \le +125^{\circ}C$ $+2.7 \text{ V} \le V_{CC} \le +3.6 \text{ V}$ unless otherwise specified | Device
type | V _{CC} | Group A
subgroups | Lir | nits <u>3</u> / | Unit | |---|-------------------------|---|-----------------------|-----------------------|----------------------|-----|-----------------|------| | | | | | | Min | Max | 1 | | | Maximum operating frequency | f _{MAX} | $C_L = 50 \text{ pF minimum}$ $R_L = 500\Omega$ See figure 5 | All | 3.0 V
and
3.6 V | 9,10,11 | 150 | | MHz | | Propagation delay time, CLKBA to An | t _{PLH1} | $C_L = 50 \text{ pF minimum}$ $R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | | 5.9 | ns | | or CLKAB to Bn
3003 | <u>10</u> / | See figure 5 | | 3.0 V
and
3.6 V | | 1.0 | 5.3 | | | | t _{PHL1} | | All | 2.7 V | 9,10,11 | | 5.9 | | | | <u>10</u> / | | | 3.0 V
and
3.6 V | | 1.5 | 5.0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | All | 2.7 V | 9,10,11 | | 5.6 | ns | | to Bn or An
3003 | <u>10</u> / | See figure 5 | | 3.0 V
and
3.6 V | | 1.0 | 4.9 | | | | t _{PHL2} | | All | 2.7 V | 9,10,11 | | 5.0 | | | | <u>10</u> / | | 3.0 V
and
3.6 V | | 1.2 | 4.8 | | | | Propagation delay time, SBA to An | t _{PLH3} | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | | 6.3 | ns | | or SAB to Bn
3003 | <u>10</u> / <u>11</u> / | See figure 5 | | 3.0 V
and
3.6 V | | 1.0 | 5.3 | | | | t _{PHL3} | | All | 2.7 V | 9,10,11 | | 6.3 | | | | <u>10</u> / <u>11</u> / | | | 3.0 V
and
3.6 V | | 1.3 | 5.3 | | | Propagation delay time, ou <u>tpu</u> t | t _{PZH1} | $C_L = 50 \text{ pF minimum}$ $R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | | 6.7 | ns | | enable, OE to
An or Bn
3003 | <u>10</u> / | See figure 5 | | 3.0 V
and
3.6 V | | 1.0 | 5.4 | | | | t _{PZL1} | | All | 2.7 V | 9,10,11 | | 6.7 | | | 10/ | | | 3.0 V
and
3.6 V | | 1.0 | 5.6 | | | | See footnotes at end of | f table. | • | | • | | | • | • | | | STANDA
CIRCUIT | RD
DRAWING | SIZE
A | | | | 5962-9 | 6748 | | | | TER COLUMBUS
43216-5000 | | REVIS | SION LEVEL
C | ! | SHEET | 9 | | | - | TABLE I. <u>Electrical performance c</u> | haracterist | <u>tics</u> - Con | tinued. | | | | |--|-------------------|--|----------------|-----------------------|----------------------|-----|----------------|------| | 查询" <u>Tes62-96748(</u>
MIL-STD-883
test method <u>1</u> / | 1936"i | 下空 Test conditions $2/$ -55°C \leq T _C \leq +125°C +2.7 V \leq V _{CC} \leq +3.6 V unless otherwise specified | Device
type | V _{CC} | Group A
subgroups | Lim | its <u>3</u> / | Unit | | | | | | | | Min | Max | | | Propagation delay
time, out <u>pu</u> t | t _{PHZ1} | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | | 6.5 | ns | | disable, OE to
An or Bn
3003 | <u>10</u> / | See figure 5 | | 3.0 V
and
3.6 V | | 1.7 | 6.3 | | | | t _{PLZ1} | | | 2.7 V | 9,10,11 | | 6.5 | | | | <u>10</u> / | | | 3.0 V
and
3.6 V | | 2.2 | 6.3 | | | Propagation delay time, output | t _{PZH2} | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | | 6.8 | ns | | enable, DIR to
An or Bn
3003 | <u>10</u> / | See figure 5 | | 3.0 V
and
3.6 V | | 1.2 | 5.6 | | | | t _{PZL2} | | All | 2.7 V | 9,10,11 | | 6.8 | | | | <u>10</u> / | | | 3.0 V
and
3.6 V | | 1.2 | 6.7 | | | Propagation delay time, output | t _{PHZ2} | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All | 2.7 V | 9,10,11 | | 8.1 | ns | | disable, DIR to
An or Bn
3003 | <u>10</u> / | See figure 5 | | 3.0 V
and
3.6 V | | 1.1 | 7.2 | | | | t _{PLZ2} | | All | 2.7 V | 9,10,11 | | 6.6 | | | | <u>10</u> / | | | 3.0 V
and
3.6 V | | 1.4 | 6.1 | | See footnotes on next sheet. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 10 | ## TABLE I. <u>Electrical performance characteristics</u> - Continued 查询"5962-9674801O3A"供应商 For tests not listed in the referenced MIL-STD-883 (e.g. ΔI_{CC}), utilize the general test procedure of 883 under the conditions listed herein. - Each input/output, as applicable, shall be tested at the specified temperature, for the specified limits, to the tests in table I herein. Output terminals not designated shall be high level logic, low level logic, or open, except for all I_{CC} and ΔI_{CC} tests, where the output terminals shall be open. When performing these tests, the current meter shall be placed in the circuit such that all current flows through the meter. For input terminals not designated, $V_{IN} \le 0.8 \text{ V}$ or $\ge 2.0 \text{ V}$. - 3/ For negative and positive voltage and current values, the sign designates the potential difference in reference to GND and the direction of current flow, respectively;
and the absolute value of the magnitude, not the sign, is relative to the minimum and maximum limits, as applicable, listed herein. - 4/ For I/O ports, the limit includes I_{OZH} or I_{OZL} leakage current from the output circuitry. - 5/ For I/O ports, the limit includes I_{IH} or I_{IL} leakage current from the input circuitry. - $\underline{6}'$ This test shall be guaranteed, if not tested, to the limits specified in table I herein, when performed with control inputs that affect the state of the output under test at $V_{IN} = 0.8 \text{ V}$ or 2.0 V. - This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC} . This test may be performed either one input at a time (preferred method) or with all input pins simultaneously at $V_{IN} = V_{CC}$ 0.6 V (alternate method). When the test is performed using the alternate test method, the maximum limit is equal to the number of inputs at a high TTL input level times 0.2 mA, and the preferred method and limits are guaranteed. - 8/ This test is for qualification only. Ground and V_{CC} bounce tests are performed on a non-switching (quiescent) output and are used to measure the magnitude of induced noise caused by other simultaneously switching outputs. The test is performed on a low noise bench test fixture. For the device under test, all outputs shall be loaded with 500Ω of load resistance and a minimum of 50 pF of load capacitance (see figure 4). Only chip capacitors and resistors shall be used. The output load components shall be located as close as possible to the device outputs. It is suggested, that whenever possible, this distance be kept to less than 0.25 inches. Decoupling capacitors shall be placed in parallel from $V_{\rm CC}$ to ground. The values of these decoupling capacitors shall be determined by the device manufacturer. The low and high level ground and $V_{\rm CC}$ bounce noise is measured at the quiet output using a 1 GHz minimum bandwidth oscilloscope with a 50Ω input impedance. The device inputs shall be conditioned such that all outputs are at a high nominal V_{OH} level. The device inputs shall then be conditioned such that they switch simultaneously and the output under test remains at V_{OH} as all other outputs possible are switched from V_{OH} to V_{OL} . V_{OHV} and V_{OHP} are then measured from the nominal V_{OH} level to the largest negative and positive peaks, respectively (see figure 4). This is then repeated with the same outputs not under test switching from V_{OL} to V_{OH} . The device inputs shall be conditioned such that all outputs are at a low nominal V_{OL} level. The device inputs shall then be conditioned such that they switch simultaneously and the output under test remains at V_{OL} as all other outputs possible are switched from V_{OL} to V_{OH} . V_{OLP} and V_{OLV} are then measured from the nominal V_{OL} level to the largest positive and negative peaks, respectively (see figure 4). This is then repeated with the same outputs not under test switching from V_{OH} to V_{OL} - 9/ Tests shall be performed in sequence, attributes data only. Functional tests shall include the truth table and other logic patterns used for fault detection. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2 herein. Functional tests shall be performed in sequence as approved by the qualifying activity on qualified devices. Allowable tolerances per MIL-STD-883 for V_{IL} and V_{IH} have already been incorporated. For outputs, L ≤ 0.8 V, H ≥ 2.0 V. - 10/ For propagation delay tests, test all functions of each input and output. - 11/ These parameters are measured with the internal output state of the storage register opposite to that of the bus input. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 11 | | 查询"5962-9674801Q3A"(| evice type | 0 | 1 | |------------------------------------|-----------------|------------|------------| | <u>= 17 0002 007 100 1 Q07 1 p</u> | Case outlines | K, L | 3 | | | Terminal number | Termina | l symbol | | | 1 | CLKAB | NC | | | 2 | SAB | CLKAB | | | 3 | DIR | SAB | | | 4 | A 1 | DIR | | | 5 | A 2 | A 1 | | | 6 | А3 | A2 | | | 7 | A4 | АЗ | | | 8 | A 5 | NC | | | 9 | A6 | A4 | | | 10 | A 7 | A 5 | | | 11 | A8 | A6 | | | 12 | GND | A 7 | | | 13 | B8 | A8 | | | 14 | B7 | GND | | | 15 | B6 | NC | | | 16 | B5 | B8 | | | 17 | B4 | B7 | | | 18 | B3 | B6 | | | 19 | B2 | B5 | | | 20 | <u>B1</u> | B4 | | | 21 | OE | В3 | | | 22 | SBA | NC | | | 23 | CLKBA | B2 | | | 24 | V_{CC} | <u>B1</u> | | | 25 | | OE | | | 26 | | SBA | | | 27 | | CLKBA | | | 28 | | V_{CC} | | | | | | | Pin description | | | | | | | | | |-----------------|-----------------------------|--|--|--|--|--|--|--| | Terminal symbol | Description | | | | | | | | | An (n = 1 to 8) | Data inputs/outputs, A port | | | | | | | | | Bn (n = 1 to 8) | Data inputs/outputs, B port | | | | | | | | | OE | Output enable control input | | | | | | | | | DIR | Direction-control input | | | | | | | | | CLKAB/CLKBA | Register clocks | | | | | | | | | SAB/SBA | Select-control inputs | | | | | | | | FIGURE 1. <u>Terminal connections</u>. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 12 | | 查询"5 | 962-96 | 967480109亿学生应商 DATA I/Os | | | | | | | | | |------|--------|--------------------------|-------------|--------|--------|---------------------------------|---------------------------------|--|--|--| | ŌE | DIR | CLKAB | CLKBA | SAB | SBA | A1 thru A8 | B1 thru B8 | OPERATION OR FUNCTION | | | | X | X
X | ↑
X | X
↑ | × | X
X | Input
Unspecified <u>1</u> / | Unspecified <u>1</u> /
Input | Store A, B unspecified 1/
Store B, A unspecified 1/ | | | | H | X
X | ↑
H or L | ↑
H or L | X
X | X | Input
Input disabled | Input
Input disabled | Store A and B data
Isolation, hold storage | | | | L | L | X
X | X
H or L | × | LΙ | Output
Output | Input
Input | Real-time B data to A bus
Stored B data to A bus | | | | L | H
H | X
H or L | X
X | L
H | X
X | Input
Input | Output
Output | Real-time A data to B bus
Stored A data to B bus | | | H = High voltage level L = Low voltage level X = Irrelevant ↑ = Low-to-high transition of clock. The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input <u>1</u>/ functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs. FIGURE 2. Truth table. FIGURE 3. Logic diagram. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 13 | DSCC FORM 2234 APR 97 # NOTES: - 1. C_L includes a 47 pF chip capacitor (-0 percent, +20 percent) and at least 3 pF of equivalent capacitance from the test - jig and probe. $R_L=450\Omega\pm1$ percent, chip resistor in series with a 50Ω termination. For monitored outputs, the 50Ω termination shall be the 50Ω characteristic impedance of the coaxial connector to the oscilloscope. - 3. Input signal to the device under test: - $V_{IN} = 0.0 \text{ V to } 2.7 \text{ V}$; duty cycle = 50 percent; $f_{IN} \ge 1 \text{ MHz}$. - t_r , $t_f = 3.0$ ns ± 1.0 ns. For input signal generators incapable of maintaining these values of t_r and t_f , the 3.0 ns limit may be increased up to 10 ns, as needed, maintaining the ± 1.0 ns tolerance and guaranteeing the results at 3.0 ns ± 1.0 ns; skew between any two switching inputs signals (t_{sk}) : ≤ 250 ps. FIGURE 4. Ground bounce test circuit and waveforms. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 14 | DSCC FORM 2234 APR 97 FIGURE 5. Switching waveforms and test circuit. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET
15 | ## NOTES: - When measuring t_{PLZ} and t_{PZL} : $V_{\text{TEST}} = 6.0 \text{ V}$. When measuring t_{PLH} and t_{PHL} : $V_{\text{TEST}} = \text{open}$. When measuring t_{PHZ} and t_{PZH} : $V_{\text{TEST}} = \text{open}$. 2. 3. - The tPZL and tPLZ reference waveform is for the output under test with internal conditions such that the output is at Vol except when disabled by the output enable control. The t_{PZH} and t_{PHZ} reference waveform is for the output under test with internal conditions such that the output is at V_{OH} except when disabled by the output enable control. - $C_L=50$ pF minimum or equivalent (includes test jig and probe
capacitance). $R_L=500\Omega$ or equivalent. - $R_T = 50\Omega$ or equivalent. - 6. 7. 8. Input signal from pulse generator: $V_{IN} = 0.0 \text{ V}$ to 2.7 V; PRR \leq 10 MHz; $t_r \leq$ 2.5 ns; $t_f \leq$ 2.5 ns; t_r and t_f shall be measured from 0.27 V to 2.43 V and 2.43 V to 0.27 V, respectively; duty cycle = 50 percent. - 9. Timing parameters shall be tested at a minimum input frequency of 1 MHz. - The outputs are measured one at a time with one transition per measurement. FIGURE 5. Switching waveforms and test circuit - Continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 16 | ## 4. QUALITY ASSURANCE PROVISIONS 面话的配向配面。 MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - (2) $T_A = +125^{\circ}C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with - MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - Interim and final electrical test parameters shall be as specified in table II herein. - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.3.1 <u>Electrostatic discharge sensitivity qualification inspection</u>. Electrostatic discharge sensitivity (ESDS) testing shall be performed in accordance with MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes which may affect ESDS classification. - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 17 | ## TABLE II. <u>Electrical test requirements</u>. | 5962-9674801Q3A"供应商
Test requirements | Subgroups
(in accordance with
MIL-STD-883, method
5005, table I) | Subgr
(in accorda
MIL-PRF-385 | ance with | |---|---|-------------------------------------|--| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | | | 1 | | Final electrical parameters (see 4.2) | 1/ 1, 2, 3, 7,
8, 9, 10, 11 | 1/ 1, 2, 3, 7,
8, 9, 10, 11 | <u>2</u> / 1, 2, 3, 7,
8, 9, 10, 11 | | Group A test requirements (see 4.4) | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | | Group C end-point
electrical parameters
(see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3, 7,
8, 9, 10, 11 | | Group D end-point
electrical parameters
(see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3 | | Group E end-point
electrical parameters
(see 4.4) | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | ^{1/} PDA applies to subgroup 1. ## 4.4.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2, herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein). - c. C_{IN} and $C_{\text{I/O}}$ shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} and $C_{\text{I/O}}$ shall be measured between the designated terminal and GND at a frequency of 1 MHz. This test may be performed at 10 MHz and guaranteed, if not tested, at 1 MHz. The DC bias for the pin under test $(V_{\text{BIAS}}) = 2.5 \text{ V}$ or 3.0 V. For C_{IN} and $C_{\text{I/O}}$, test all applicable pins on five devices with zero failures. For C_{IN} and $C_{\text{I/O}}$, a device manufacturer may qualify devices by functional groups. A specific functional group shall be composed of function types, that by design, will yield the same capacitance values when tested in accordance with table I, herein. The device manufacturer shall set a function group limit for the C_{IN} and $C_{\text{I/O}}$ tests. The device manufacturer may then test one device functional group, to the limits and conditions specified herein. All other device functions in that particular functional group shall be guaranteed, if not tested, to the limits and test conditions specified in table I, herein. The device manufacturers shall submit to DSCC-VA the device functions listed in each functional group and the test results for each device tested. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET
18 | ^{2/} PDA applies to subgroups 1 and 7. d. Ground and VCC bounce tests are required for all device classes. These tests shall be performed only for initial qualification, after process or design changes which may affect the performance of the device, and any changes to in the test of the device. All the performance of the worst case outputs of the device. All other outputs shall be guaranteed, if not tested, to the limits established for the worst case outputs. The worst case outputs tested are to be determined by the manufacturer. Test 5 devices assembled in the worst case package type supplied to this document. All other package types shall be guaranteed, if not tested, to the limits established for the worst case package. The 5 devices to be tested shall be the worst case device type supplied to this drawing. All other device types shall be guaranteed, if not tested, to the limits established for the worst case device type. The package type and device type to be tested shall be determined by the manufacturer. The device manufacturer will submit to DSCC-VA data that shall include all measured peak values for each device tested and detailed oscilloscope plots for each VOLP, VOLV, VOHP, and VOHV from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test. Each device manufacturer shall test product on the fixtures they currently use. When a new fixture is used, the device manufacturer shall inform DSCC-VA of this change and test the 5 devices on both the new and old test fixtures. The device manufacturer shall then submit to DSCC-VA data from testing on both fixtures, that shall include all measured peak values for each device tested and detailed oscilloscope plots for each VOLP, VOLV, VOHP, and VOHV from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test. For VOHP, VOHV, VOLP, and VOLV, a device manufacturer may qualify devices by functional groups. A specific
functional group shall be composed of function types, that by design, will yield the same test values when tested in accordance with table I, herein. The device manufacturer shall set a functional group limit for the VOHP, VOHV, VOLP, and VOLV tests. The device manufacturer may then test one device function from a functional group, to the limits and conditions specified herein. All other device functions in that particular functional group shall be guaranteed, if not tested, to the limits and conditions specified in table I, herein. The device manufacturers shall submit to DSCC-VA the device functions listed in each functional group and test results, along with the oscilloscope plots, for each device tested. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - b. $T_A = +125^{\circ}C$, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at $T_A = +25$ °C, after exposure, to the subgroups specified in table II herein. - c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 19 | 4.5 Methods of inspection. Methods of inspection shall be specified as follows: 查询"<u>Voltage Bird 8016 AU</u>快感商erwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal. ## 5. PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. # 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 Sources of supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing. 6.6.2 Approved sources of supply for device class M. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96748 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 20 | DATE: 99-03-19 Approved sources of supply for SMD 5962-96748 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962-9674801QKA | 01295 | SNJ54LVTH646W | | 5962-9674801QLA | 01295 | SNJ54LVTH646JT | | 5962-9674801Q3A | 01295 | SNJ54LVTH646FK | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendorto determine its availability. - <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. Vendor CAGE Vendor name number and address 01295 Texas Instruments Incorporated 13500 N. Central Expressway P.O. Box 655303 Dallas, TX 75265 Point of contact: 6412 Highway 75 South Sherman, TX 75090 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.