11111596	2-88	718	301.	2X'	供	立序	j				R	EVIS	NOK													
LTR								DES	CRIF	TIOIT	V.								DA	TE (Y	R-MO	-DA)		APPI	ROVE	D
	· · · · · · · · · · · · · · · · · · ·							T			•	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								.			į
REV	_	_					<u> </u>			_									L							
SHEET		_					<u> </u>	ļ		_	_	<u> </u>	Ш				<u> </u>	_	<u> </u>				_	_		
REV	\dashv	┪	\dashv	_		_	-	\vdash	-	-	┝	┢	\vdash	\dashv			_	┝	├	<u> </u>			-		_	\vdash
		┰	RE	v			\vdash	┢	\vdash		_	-	\vdash	\dashv	\dashv		 		-	-						Н
REV STAT OF SHEE				EET		7	2	3	4	5	6	7	8	9	10		\vdash			Н		\vdash			-	
PMIC N/A					=	PRE	PARE	D BY		=	5			Ī		DEF	ENSE							NTE	L R	
STANI MI	DAR LITA			D		CHE	CKE	ВΥ	N		M	,	U		T C D C		RCUIT			I, O H				CM	ns	
DR	AW	INC	à			APP	BOV	D B					•	H	EX I	INVE	RTE	RS,	MONO)LIT	HIC	SIL	ICON	, cm	υ,,	
THIS DRAW FOR USE BY AND AC	ALL SENCI	DEP/ ES O	RTM F TH	ENT E					PROV			##		1	SIZE A						5	596	52-	88	71	В
AMSC N		JF ()	EFEN	ise.		REV	ISION	LEV	EL						s	HEI			1		OF.		10			

a U.S. GOVERNMENT PRINTING OFFICE: 1987 --- 748-129/60911

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5962-E1020

1. SCOPE			
1.1 Scope. This drawing describes dev with 1.2.1 of MIL-STD-883, "Provisions for non-JAM devices".	ice require r the use o	ments for class B m f MIL-STD-883 in co	nicrocircuits in accordance onjunction with compliant
1.2 Part number. The complete part num	mber shall	be as shown in the	following example:
<u>5962-88718</u> 01	-	<u>c</u>	X
Drawing number Device (1.2.		Case outline (1.2.2)	Lead finish per MIL-M-38510
1.2.1 <u>Device type</u> . The device type sha	ll identif	y the circuit funct	tion as follows:
Device type Generic num	ber	Circuit fund	tion
01 54HC05		Hex inverters with	open-drain outputs
1.2.2 <u>Case outlines</u> . The case outlines as follows:	shall be	as designated in ap	pendix C of MIL-M-38510, and
Outline letter		Case outline	
C D-1 (14-1e 2 C-2 (20-te	ad, .785" rminal, .3	x .310" x .200"), d 58" x .358" x .100"	ual-in-line package), square chip carrier package
1.3 Absolute maximum ratings. 1/			
Supply voltage range DC input voltage DC output voltage DC output voltage DC output current (per pin) DC V _{CC} or GND current (per pin) - Continuous power dissipation (P _D) 2/Storage temperature range Lead temperature (soldering, 10 secon Thermal resistance, junction-to-case Junction temperature (T _J)	nds)	0.5 V dc 0.5 V dc *20 mA *25 mA *50 mW 65°C to + *30°C See MIL-M-	to +7.0 V dc to V _{CC} + 0.5 V dc to V _{CC} + 0.5 V dc 150°C 38510, appendix C
1.4 Recommended operating conditions.			
Supply voltage range (V _{CC}) Input voltage range		+2.0 Y dc 0 to V _{CC} 0 to V _{CC}	minimum to +6.0 V dc maximum
V _{CC} = 2.0 V dc V _{CC} = 4.5 V dc V _{CC} = 6.0 V dc Case operating temperature range (T _C)	0 to 1000 0 to 500 n 0 to 400 n 55°C to +	S S
1/ Image otherwise energial all water			
1/ Unless otherwise specified, all voltag 2/ For T _C = +100°C to +125°C, derate line	es are refe arly at 12	mW/°C.	
STANDARDIZED	SIZE		
MILITARY DRAWING DEPENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	Α	REVISION LEVEL	
DESC FORM 193A	L		2

☆ U. S. GOVERNMENT PRINTING OFFICE: 1986—560-54

I I I 590Z-00/1001ZX 中共2年的

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
- 3.2.3 Test circuit and switching waveforms. The test circuit and switching waveforms shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.

STANDARDIZED MILITARY DRAWING	SIZE A		Ę	5962-88718	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	•	SHEET 3	

DESC FORM 193A SEP 87

Test	Symbol	Condi -55°C < T _C		Group A			Unii
		unless otherw	$\frac{4}{1}$ +125°C $\frac{1}{2}$	subgroups		Max	
High level output current	Іон	VIN = VIH minimum or VIL maximum VOUT = 6.0 V	V _{CC} = 6.0 V	1, 2, 3		10	μА
Low level output voltage	V _{OL}	V _{IN} = V _{IH} minimum or V _{IL} maximum I _{OL} = 20 μA	V _{CC} = 2.0 V	1, 2, 3		0.1	 V
		1 _{0L} = 20 μA 	V _{CC} = 4.5 V			0.1	
			V _{CC} = 6.0 V	_ 		0.1	
	 	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V _{CC} = 4.5 V	1, 2, 3		0.4	٧
		VIN = VIH minimum or VIL maximum I _{OL} = 5.2 mA	V _{CC} = 6.0 V	1, 2, 3		0.4	٧
High level input voltage	AIH	<u>2</u> /	V _{CC} = 2.0 V	1, 2, 3	1.5		٧
			V _{CC} = 4.5 V	1, 2, 3	3.15		
			VCC = 6.0 V	1, 2, 3	4.2		
Low level input voltage	v _I L	2/	V _{CC} = 2.0 V	1, 2, 3		0.3	٧
			V _{CC} = 4.5 V	1, 2, 3		0.9	
			V _{CC} = 6.0 V	1, 2, 3		1.2	
Input capacitance	CIN	V _{CC} = 2.0 V to 6.0 V see 4.3.1c	T _C = +25°C	4		10	pF
Supply current	ICC	VIN = VCC or GND IOUT = 0.0	VCC = 6.0 V	1, 2, 3		40	μА
ee footnotes at end	of table			. • • • • • • • • • • • • • • • • • • •		I	
STANDAI MILITARY E		IG SIZE A		5962	-88718		
DEFENSE ELECTRON			REVISION LEVEL		-88718 EET	4	

± U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

	ABLE 1.	Electrical	performanc	e char	acteristics -	Continued.			
Test	Symbol	 	Condit 5°C < T _C < ss otherwi	+125	°C <u>1</u> / ecified	Group A subgroups		$\overline{}$	 Unit
Input leakage current	IIIN	AIN = ACC o	r GND	V	CC = 6.0 V	1, 2, 3		±1	Ι μ Α
Functional tests		 See 4.3.1d 				7, 8		 	
Propagation delay time, from A to Y	t _{PLH}	R _L = 1 kΩ C _L = 50 pF See figure	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CC = 2.0 V	9 10, 11	 	 115 175	ns
] 	 <u>3</u> 	<u>'</u>	V ₍	CC = 4.5 V	9 10, 11	 	 23 35 	!
	 	 		۷	CC = 6.0 V	9 10, 11] 	20 30	
Propagation delay time, from A to Y	t _{PHL}	R _L = 1 kΩ C _L = 50 pF See figure	3	\ V(CC = 2.0 V	9 10, 11		85 130	ns
	 	 <u>3</u> 	!	V	CC = 4.5 V	9 10, 11		17 26	! ! !
	 			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CC = 6.0 V	9 10, 11		14 22]
Transition time from high to low at Y	 t _{THL} 	R _L = 1 kΩ C _L = 50 pF See figure :	3	٧٥	CC = 2.0 V	10, 11		75 110	ns
	 	<u>3</u> ,	/	۷ر	c = 4.5 V	9 10, 11		15 22	l I
] 			Vo	c = 6.0 V	9 10,11		13 19	}
Thus, the 4.5 V v V _{IL} occur at V _{CC} worst case leakage the 6.0 V values determines the no load dynamic of V _{IH} and V _{IL} test: 3/ AC testing at V _{CC} specified limits	values sh = 5.5 Y ge currer should be defined dy current c s are not c = 2.0 Y in table	nould be used and 4.5 V re its (IIN, ICC be used. Power consumption, trequired if and VCC = 6	when desi spectively , and I _{QZ}) er dissipa consumptio I _S = C _{PD} V _C applied a .0 V shall	gning . (The coccuration of the configuration of th	with this supple V _{IH} value at for CMOS at sapacitance (C _F = CPD ^V CC ² f + CC croing function	ply. Worst of t 5.5 V is 3 the higher vop), typical ICCVCC, and	case V .85 V.) oltage, ly 60 p the	H and The	٧.
STANDAF MILITARY D			SIZE A			590	62-8871	.8	
		Y CENTER			REVISION LEVEL		SHEET		

± U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section $\frac{4}{6}$ of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method $\frac{5005}{5005}$ of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Test all applicable pins on 5 devices with zero failures.
 - d. Subgroup 7 and 8 tests shall verify the truth table specified on figure 2.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A			5962-88718	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	-	SHEET 6	5

查询"5962-88718012X"供应商

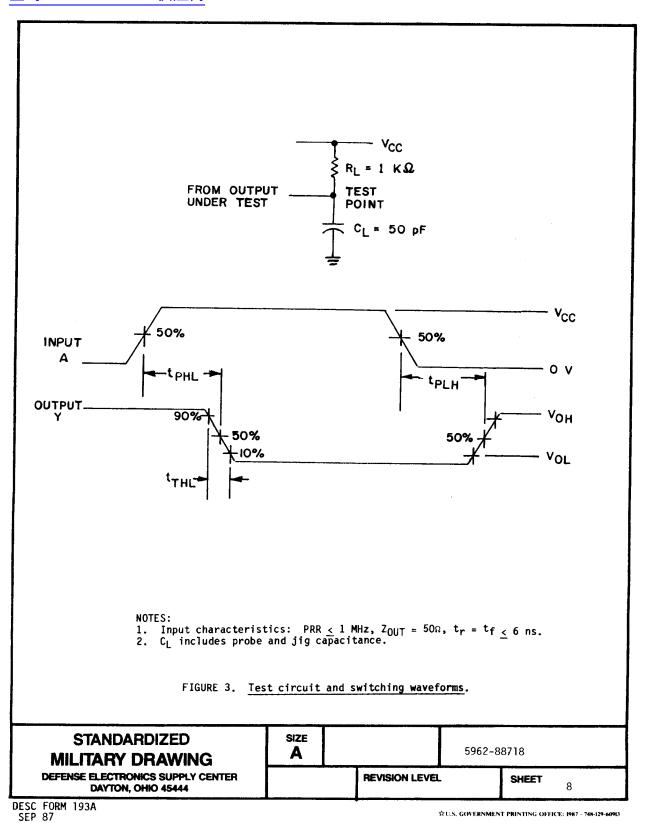
Device type	()1
Case outlines	С	2
Terminal number	 Terminal	symbol
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1A 1Y 2A 2Y 3A 3Y GND 4Y 4A 5Y 6Y 6A VCC	NC 1A 1Y 2A NC 2Y NC 3A 3Y NC 4Y 4A 5Y NC 6A VCC

NC = No connection

FIGURE 1. Terminal connections.

1	Input A	Output Y	
T	H L	L H	

H = High voltage level L = Low voltage level


FIGURE 2. Truth table.

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

DESC FORM 193A SEP 87

☆U.S. GOVERNMENT PRINTING OFFICE: 1987 - 748-129-60913

直即 5962-88718012X 供应向_{TABLE} II. <u>Electrical test requirements</u>.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
 Interim electrical parameters (method 5004) 	
 Final electrical test parameters (method 5004) 	1*, 2, 3, 7, 8, 9, 10, 11
 Group A test requirements (method 5005)	1, 2, 3, 4, 7, 8, 9, 10, 11
Group C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
 - 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-88718

REVISION LEVEL
SHEET
9

DESC FORM 193A SEP 87

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number 1/
5962-8871801CX	01295	SNJ54HC05J
5962-88718012X	01295	SNJ 54HCO5FK

 $\frac{1}{\text{Acquisition.}} \begin{tabular}{ll} \hline \textbf{Caution.} & \textbf{Do not use this number for item} \\ \hline \textbf{acquisition.} & \textbf{Items acquired to this number} \\ \hline \textbf{may not satisfy the performance requirements} \\ \hline \textbf{of this drawing.} \\ \hline \end{tabular}$

Vendor CAGE number

Vendor name and address

01295

Texas Instruments, Incorporated P.O. Box 60448 Midland, TX 79711-0448

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A 5962-88718

REVISION LEVEL SHEET 10

DESC FORM 193A SEP 87

011086 ____