查<mark>询"FDMC7692"供</mark>应商 FAIRCHILD

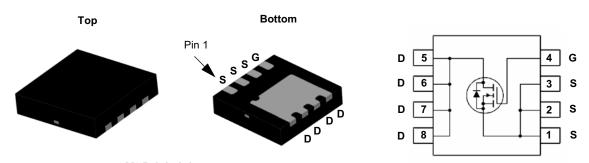
SEMICONDUCTOR®

September 2010

FDMC7692 N-Channel Power Trench[®] MOSFET 30 V, 13.3 A, 8.5 m Ω

Features

- Max r_{DS(on)} = 8.5 mΩ at V_{GS} = 10 V, I_D = 13.3 A
- Max r_{DS(on)} = 11.5 mΩ at V_{GS} = 4.5 V, I_D = 10.6 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Application

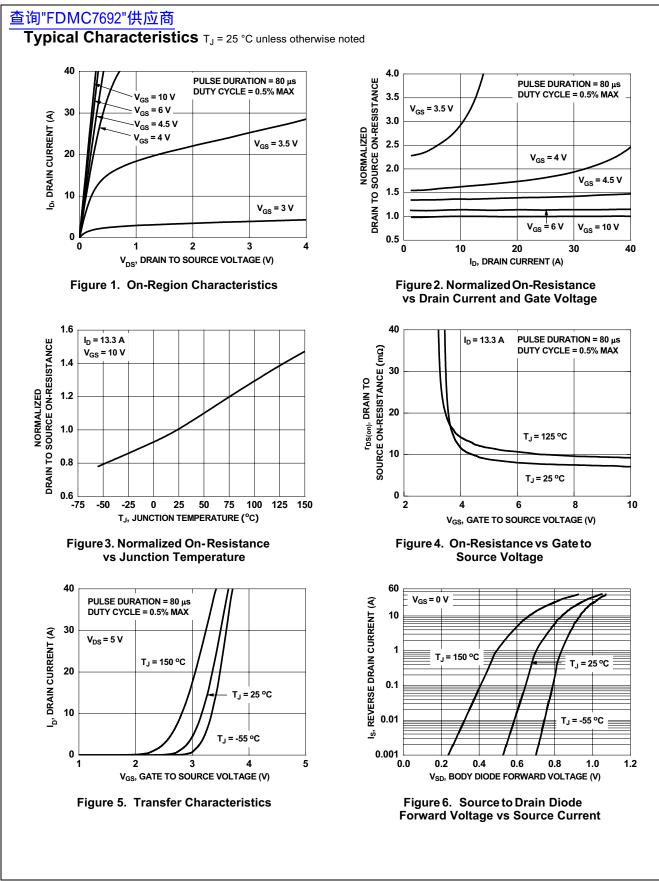
- DC DC Buck Converters
- Notebook battery power management
- Load switch in Notebook

MLP 3.3x3.3

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

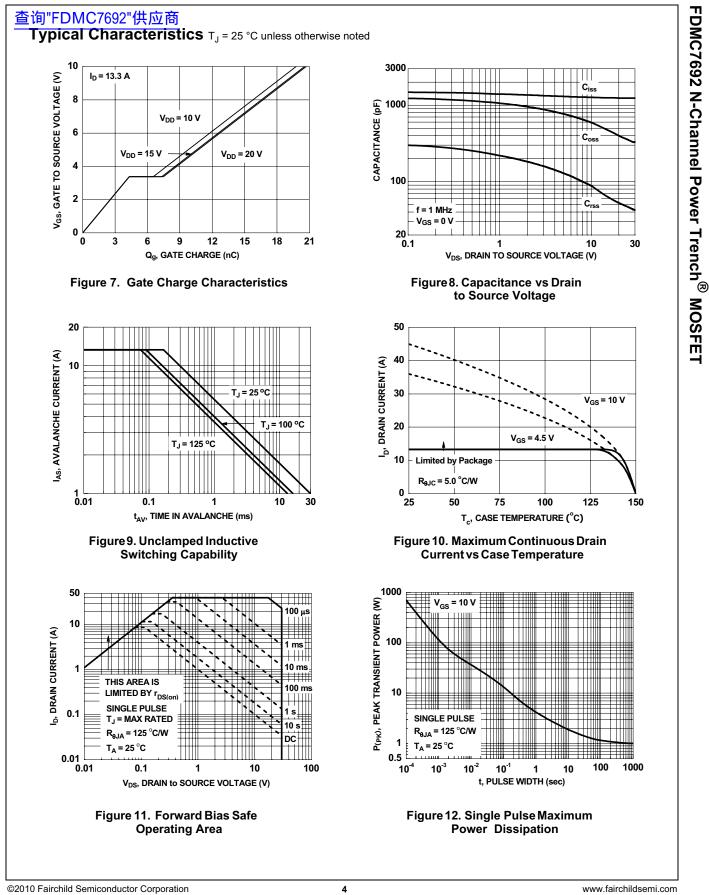
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous (Package limited)	T _C = 25 °C		16		
	-Continuous	T _A = 25 °C	(Note 1a)	13.3	A	
	-Pulsed			40		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	58	mJ	
P _D	Power Dissipation	T _C = 25 °C		29		
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.3		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

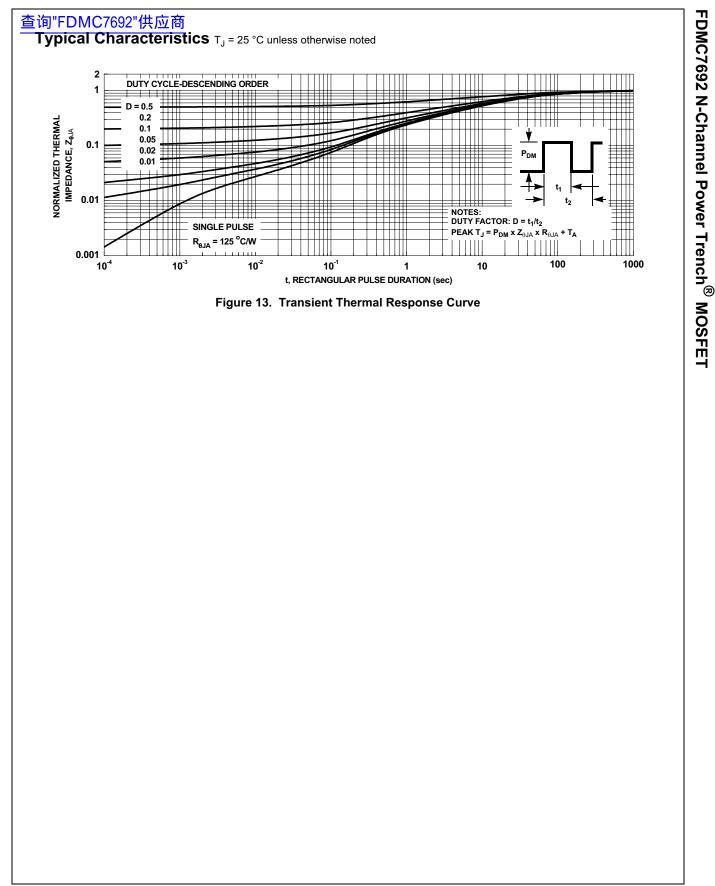

$R_{\theta JC}$	Thermal Resistance, Junction to Case	4.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	C/vv

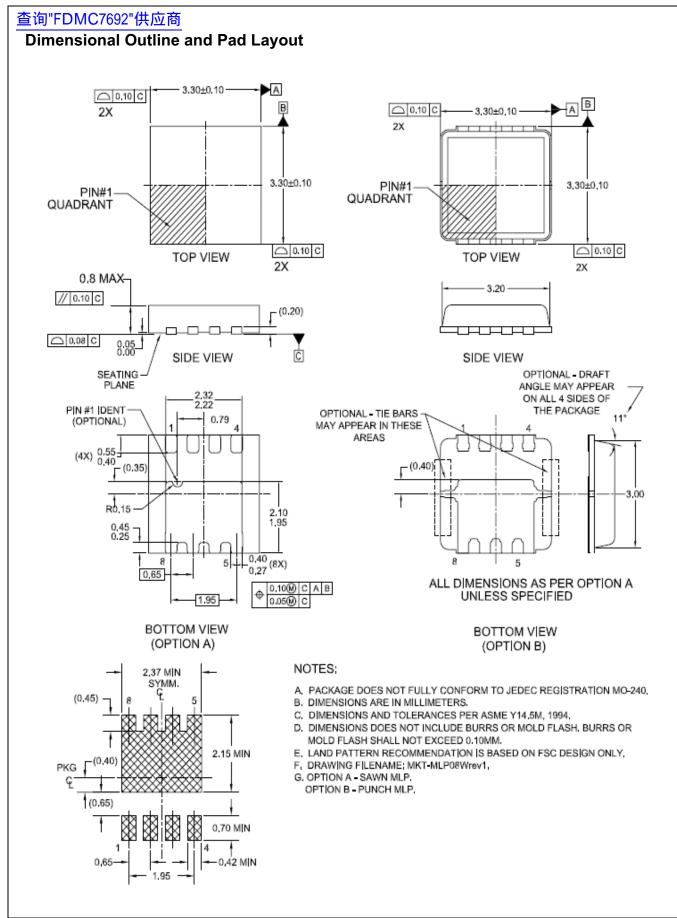
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC7692	FDMC7692	MLP 3.3x3.3	13 "	12 mm 3000 u	


down Voltage mperature in Current ge Current old Voltage old Voltage tt	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0$ $V_{GS} = V_{DS}, \text{ I}_{D} = 250$ $I_{D} = 250 \mu\text{A}, \text{ reference}$ $V_{GS} = 10 \text{V}, \text{ I}_{D} = 13.$	xed to 25 °C V $T_J = 125 °C$ V μA xed to 25 °C	30	16 1.9 -6	1 250 100 3.0	V mV/°C μA nA V
in Current ge Current old Voltage old Voltage	$\begin{split} & V_{DS} = 250 \ \mu\text{A}, \ \text{reference} \\ & V_{DS} = 24 \ \text{V}, \ \text{V}_{GS} = 0 \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \\ & I_{D} = 250 \ \mu\text{A}, \ \text{reference} \\ & I_{D} = 250 \ \mu\text{A}, \ \text{reference} \\ & V_{GS} = 10 \ \text{V}, \ I_{D} = 13. \end{split}$	xed to 25 °C V $T_J = 125 °C$ V μA xed to 25 °C		1.9	250 100	mV/°C - μA nA V
in Current ge Current old Voltage old Voltage	$\begin{split} & V_{DS} = 250 \ \mu\text{A}, \ \text{reference} \\ & V_{DS} = 24 \ \text{V}, \ \text{V}_{GS} = 0 \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \\ & I_{D} = 250 \ \mu\text{A}, \ \text{reference} \\ & I_{D} = 250 \ \mu\text{A}, \ \text{reference} \\ & V_{GS} = 10 \ \text{V}, \ I_{D} = 13. \end{split}$	xed to 25 °C V $T_J = 125 °C$ V μA xed to 25 °C	1.2	1.9	250 100	- μA nA V
ge Current old Voltage old Voltage nt	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0$ $V_{GS} = V_{DS}, \text{ I}_{D} = 250$ $I_{D} = 250 \mu\text{A}, \text{ reference}$ $V_{GS} = 10 \text{V}, \text{ I}_{D} = 13.$	T _J = 125 °C V μA ced to 25 °C	1.2		250 100	nA V
old Voltage old Voltage nt	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0$ $V_{GS} = V_{DS}, \text{ I}_{D} = 250$ $I_{D} = 250 \mu\text{A}, \text{ reference}$ $V_{GS} = 10 \text{V}, \text{ I}_{D} = 13.$	μA ced to 25 °C	1.2		100	V
old Voltage old Voltage nt	$V_{GS} = V_{DS}, I_D = 250$ $I_D = 250 \ \mu\text{A}, \text{ reference}$ $V_{GS} = 10 \ \text{V}, I_D = 13.$	μA ced to 25 °C	1.2		3.0	
old Voltage ht	$I_D = 250 \ \mu\text{A}, \text{ reference}$ $V_{GS} = 10 \ \text{V}, \ I_D = 13.$	ced to 25 °C	1.2		3.0	
old Voltage ht	$I_D = 250 \ \mu\text{A}, \text{ reference}$ $V_{GS} = 10 \ \text{V}, \ I_D = 13.$	ced to 25 °C	1.2		0.0	
nt	V _{GS} = 10 V, I _D = 13.			-6		\//°C
On Resistance		3 A				IIIV/ C
On Resistance	$V_{GS} = 4.5 V_{.1D} = 10$			7.2	8.5	
	1 00 ···· · · · · · · · · · · · · · · ·	V _{GS} = 4.5 V, I _D = 10.6 A			11.5	mΩ
	V _{GS} = 10 V, I _D = 13.3	3 A, T _J = 125 °C		9.5	12.0	1
ance	V _{DD} = 5 V, I _D = 13.3	A		60		S
				1260	1680	pF
	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz			480	635	pF
citance						pF
						Ω
	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$			3	10	ns ns
		_		3	10	ns
				21	29	nC
				10	14	nC
		_D = 13.3 A		5		nC
Charge				3		nC
teristics						
Source to Drain Diode Forward Voltage		A (Note 2)		0.86	1.2	V
	V _{GS} = 0 V, I _S = 1.9 A	(Note 2)		0.75	1.2	
	I _⊏ = 13.3 A. di/dt = 10	00 A/us		24	38	ns
arge	$-1F = 13.3 \text{ A}, \text{ u/ut} = 100 \text{ A/}\mu\text{s}$			7	14	nC
	acitance	acitance f = 1 MHz acitance V _{DD} = 15 V, I _D = 13.3 V _{GS} = 10 V, R _{GEN} = V _{GS} = 0 V to 10 V V _{GS} = 0 V to 10 V V _{GS} = 0 V to 4.5 V Charge Forward Voltage V _{GS} = 0 V, I _S = 13.3 A I _E = 13.3 A, di/dt = 10	acitance V_{DD} = 15 V, I_D = 13.3 A, V_{GS} = 10 V, R_{GEN} = 6 \Omega V_{GS} = 0 V to 10 V V_{GS} = 0 V to 4.5 V V_{DD} = 13.3 A Charge V_{GS} = 0 V, I_S = 13.3 A Keristics Forward Voltage V_{GS} = 0 V, I_S = 1.9 A I_E = 13.3 A, di/dt = 100 A/us	acitance f = 1 MHz acitance V _{DD} = 15 V, I _D = 13.3 A, V _{GS} = 10 V, R _{GEN} = 6 Ω V _{GS} = 0 V to 10 V V _{GS} = 0 V to 10 V V _{GS} = 0 V to 4.5 V V _{DD} = 15 V, I _D = 13.3 A V _{GS} = 0 V to 4.5 V V _{DD} = 15 V I _D = 13.3 A Charge V _{GS} = 0 V, I _S = 13.3 A V _{GS} = 0 V, I _S = 1.9 A (Note 2) V _{GS} = 0 V, I _S = 1.9 A I _E = 13.3 A, di/dt = 100 A/us	VDS = 15 V, VGS = 0 V, 480 acitance 65 VDD = 15 V, ID = 13.3 A, 0.9 VGS = 10 V, RGEN = 6 Ω 21 VGS = 0 V to 10 V 21 VGS = 0 V to 4.5 V 21 VDD = 13.3 A 3 VGS = 0 V to 4.5 V 10 VGS = 0 V to 4.5 V 10 VGS = 0 V to 4.5 V 3 Charge 3 Charge 3 VGS = 0 V, IS = 13.3 A 5 Charge 0.86 VGS = 0 V, IS = 1.9 A 0.75 Ie Ic = 13.3 A, di/dt = 100 A/us 24	VDS = 15 V, VGS = 0 V, f = 1 MHz 480 635 acitance 65 100 0.9 2.4 VDD = 15 V, ID = 13.3 A, VGS = 10 V, RGEN = 6 Ω 9 18 VGS = 10 V, RGEN = 6 Ω 21 33 VGS = 0 V to 10 V VGS = 0 V to 4.5 V VDD = 15 V ID = 13.3 A 21 29 VGS = 0 V to 4.5 V VDD = 13.3 A 10 14 14 Charge VGS = 0 V, IS = 13.3 A 5 10 14 Charge VGS = 0 V, IS = 13.3 A 0.86 1.2 VGS = 0 V, IS = 1.3 A 0.75 1.2 Vee Ic = 13.3 A, di/dt = 100 A/us 24 38

©2010 Fairchild Semiconductor Corporation FDMC7692 Rev.C FDMC7692 N-Channel Power Trench[®] MOSFET




©2010 Fairchild Semiconductor Corporation FDMC7692 Rev.C

www.fairchildsemi.com

FDMC7692 Rev.C

FDMC7692 N-Channel Power Trench[®] MOSFET

查询"FDMC7602"供应商 FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™ F R Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™ FlashWriter®*

FRFET[®] Global Power Resource SM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR®** PDP SPM™

F-PFS™

Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™)™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™

E SYSTEM ®* GENERAL The Power Franchise®

FDMC7692 N-Channel Power Trench[®] MOSFE⁻

power

franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* μSerDes™

UHC[∞] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors who are full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 148

7