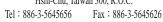
DM11A

Version : A.003

Issue Date: 2008/03/10

File Name : SP-DM11A-A.003.doc


Total Pages: 20

8-bit Constant Current LED Driver

新竹市科學園區展業一路 9 號 7 棲之 1 SILICON TOUCH TECHNOLOGY INC.

9-7F-1, Prosperity Road I, Science Based Industrial Park, Hsin-Chu, Taiwan 300, R.O.C.

DM11A

8-bit Constant Current LED Driver

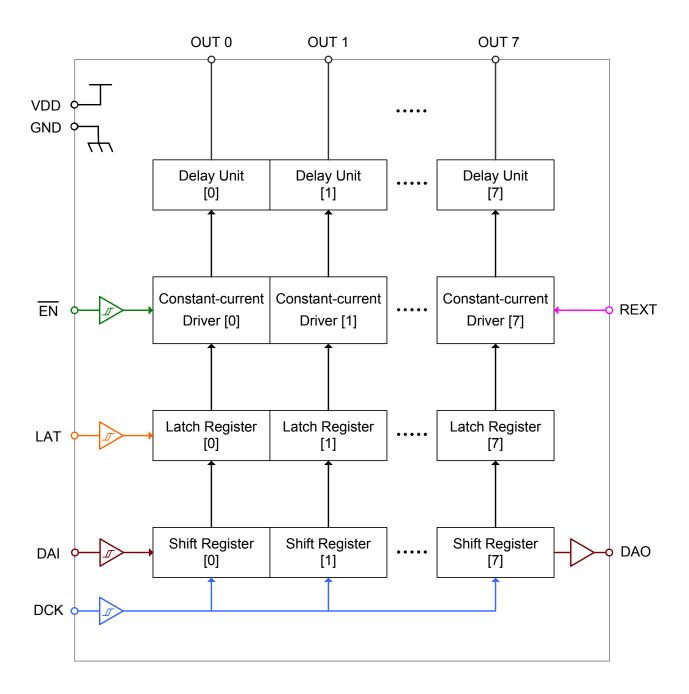
General Description

DM11A is a constant-current sink driver specifically designed for LED display applications. The device incorporates shift registers, data latches, and constant current circuitry on the silicon CMOS chip. The maximum output current value of all 8 channels is adjustable by a single external resistor.

Features

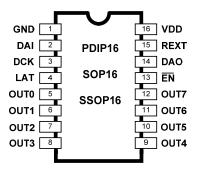
- Constant-current outputs: 3mA to 60mA adjustable by one external resistor
- Maximum output voltage: 17V
- Maximum clock frequency: 25MHz
- Power supply voltage: 3.3V to 5V
- In-rush current control
- Output slew rate control (Tr/Tf, over/under shoot)
- Bit-to-bit skew : $\pm 3\%$ (max.) Chip-to-chip skew : $\pm 6\%$ (max.)
- Package and pin assignment compatible to conventional LED drivers (DM114/5/6)

Applications


- Indoor/Outdoor LED Video Display
- LED Variable Message Signs (VMS) System

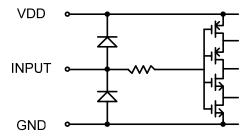
Package Types

• PDIP16, SOP16, SOP16B, SSOP16

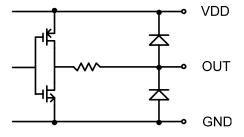


Block Diagram

Pin Connection


Pin Description

PIN No.	PIN NAME	FUNCTION
1	GND	Ground terminal.
2	DAI	Serial data input terminal.
3	DCK	Synchronous clock input terminal for serial data transfer. Data is sampled at the rising edge of DCK.
4	LAT	Input terminal of data strobe. Data on shift register goes through at the high level of LAT (level trigger). Otherwise, data is latched.
5~12	OUT0~7	Sink constant-current outputs (open-drain).
13	EN	Output enable terminal: 'H' for all outputs are turned off, 'L' for all outputs are active.
14	DAO	Serial data output terminal.
15	REXT	External resistors connected between REXT and GND for output current value setting.
16	VCC	Supply voltage terminal.



Equivalent Circuit of Inputs and Outputs

1. DCK, DAI, LAT, EN terminals

2. DAO terminals

Maximum Ratings (Ta=25°C, Tj(max) = 120°C)

	0.44001		LINUT
CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VDD	-0.3 ~ 7.0	V
Input Voltage	VIN	-0.3 ~ VDD+0.3	V
Output Current	IOUT	60	mA
Output Voltage	VOUT	-0.3 ~ 17	V
Input Clock Frequency	FDCK	25	MHz
GND Terminal Current	IGND	1500	mA
		1.12 (PDIP16 : Ta=25°C)	
Power Dissipation	DD	1.17 (SOP16 : Ta=25°C)	10/
(4 layer PCB)	PD	1.06 (SOP16B : Ta=25°C)	W
		0.82 (SSOP16 : Ta=25°C)	
		85.0 (PDIP16)	
The arrest Desistance	D#= (; -)	81.2 (SOP16)	0000
Thermal Resistance	Rth(j-a)	90 (SOP16B)	°C/W
		115.9 (SSOP16)	
Operating Temperature	Тор	-40 ~ 85	°C
Storage Temperature	Tstg	-55 ~ 150	°C

Recommended Operating Condition

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VDD	_	3.3	5.0	5.5	V
Output Voltage	VOUT	Driver On ^{*1}	1.0	_	0.5VDD	V
Output Voltage	VOUT	Driver Off ^{*2}			17	v
	Ю	OUTn	5	_	60	
Output Current	IOH	VOH = VDD - 0.2 V	_		+1.2	mA
	IOL	VOL = 0.2 V	_		-1.4	
Land O Malliana	VIH	VDD = 3.3 V ~ 5.5V	0.8VDD		VDD	V
Input Voltage	VIL	VDD = 3.3 V ~ 5.5V	0.0		0.2VDD	V
Input Clock Frequency	FDCK	Single Chip Operation	_		25	MHz
LAT Pulse Width	tw LAT		15		_	
DCK Pulse Width	tw DCK		15		_	
Set-up Time for DAI	tsetup(D)	VDD = 5.0V	10			20
Hold Time for DAI	thold(D)	VDD = 5.0V	10			ns
Set-up Time for LAT	tsetup(L)		10		_	
Hold Time for LAT	thold(L)		10		_	

Version:A.003

 $^{^{*1}}$ Notice that the power dissipation is limited to its package and ambient temperature. *2 The driver output voltage including any overshoot stress has to be compliant with the maximum voltage (17V).

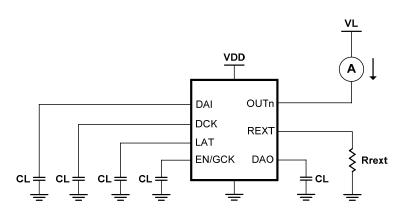
Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.8VDD		VDD	Ī.,
Input Voltage "L" Level	VIL	CMOS logics2 level	GND		0.2VDD	V
Output Leakage Current	IOL	VOH = 17 V	_	_	±1.0	uA
	VOL	IOL = 1.5 mA	_		0.2	.,
Output Voltage (DAO)	VOH	IOH= 1.4 mA	VDD-0.2			V
Output Current Skew (Channel-to-Channel)*1	IOL1	VOUT = 1.0 V	_	_	±3	%
Output Current Skew (Chip-to-Chip)*2	IOL2	Rrext = 2.2KΩ			±6	%
Output Voltage Regulation	% / VOUT	Rrext = 2.2KΩ VOUT = 1 V ~ 3 V		±0.1	±0.5	% / V
Supply Voltage Regulation	% / VDD	Rrext = 2.2 KΩ	_	±1	±4	
	I _{DD(off)}	power on all pins are open unless VDD and GND	2	3	4	
	I _{DD(off)}	input signal is static Rrext = 2.9 KΩ all outputs turn off	4	5	6	
Supply Current ^{*3}	I _{DD(on)}	input signal is static Rrext = 2.9 KΩ all outputs turn on	4	5	6	mA
	I _{DD(off)}	input signal is static Rrext = 1.05K Ω all outputs turn off	8	9	10	
	I _{DD(on)}	input signal is static Rrext = 1.05K Ω all outputs turn on	8	9	10	

^{*1} Channel-to-channel skew is defined as the ratio between (any Iout – average Iout) and average Iout, where average Iout = (Imax + Imin) / 2.

*2 Chip-to-Chip skew is defined as the range into which any output current of any IC falls.

^{*3} IO excluded.



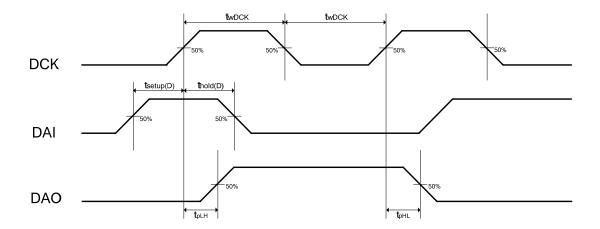
Switching Characteristics (VDD = 5.0V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay	EN-to-OUT0			46	52	58	
	LAT-to-OUT0	tpLH		48	49	50	
('L' to 'H')	DCK-to-DAO		VIH = VDD	19	20	21	
Drangation Dolay	EN-to-OUT0		VIL = GND	19	22	32	
Propagation Delay	LAT-to-OUT0	tpHL	Rrext = $2.2K\Omega$	72	75	79	ns
('H' to 'L')	DCK-to-DAO		VL = 5.0 V	19	19.5	21	
Output Current Rise Time		tor	CL ^{*1} = 13 pF	31	33.5	36	
Output Current Fall Time		tof	,	5	6	7	
Output Delay Time	e (OUT _(n) -to-OUT _(n+1))	tod		4	5	9	

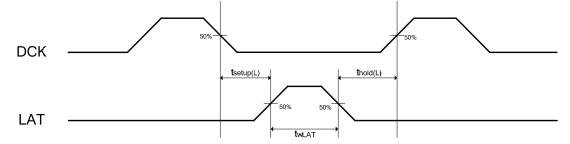
Switching Characteristics (VDD = 3.3V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay	EN-to-OUT0			46	51	57	
	LAT-to-OUT0	tpLH		20	21.5	23	
('L' to 'H')	DCK-to-DAO		VIH = VDD	11	12	13	
Propagation Delay	EN-to-OUT0		VIL = GND	22	23	24	
	LAT-to-OUT0	tpHL	Rrext = $2.2K\Omega$	46	49	53	ns
('H' to 'L')	DCK-to-DAO		VL = 5.0 V	11	11.5	12	
Output Current Rise Time		tor	CL ^{*1} = 13 pF	31	35	39	
Output Current Fall Time		tof		9	10	11	
Output Delay Time	e (OUT _(n) -to-OUT _(n+1))	tod		5	10	11	

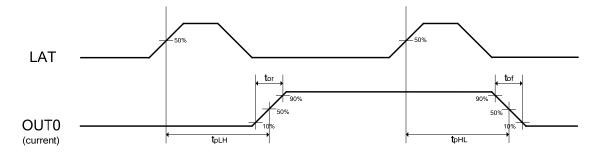
Switching Characteristics Test Circuit


_

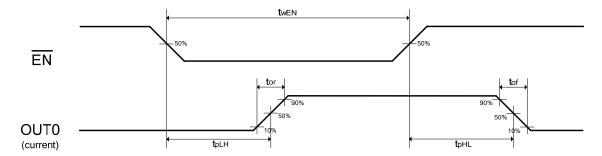
 $^{^{\}ast 1}$ CL means the probe capacitance of oscilloscope.



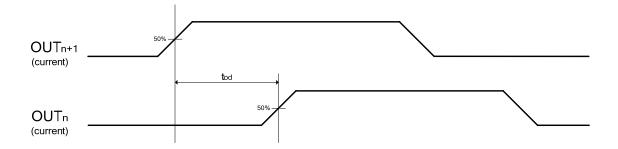
Timing Diagram


1. DCK-DAI, DAO

2. DCK-LAT

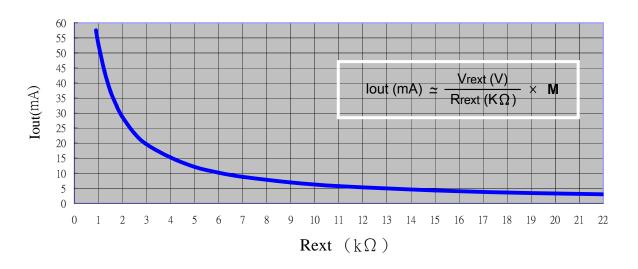


3. LAT-OUT0

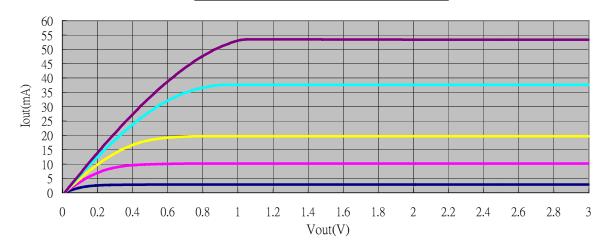


4. EN-OUT0

5. OUTn+1-OUTn



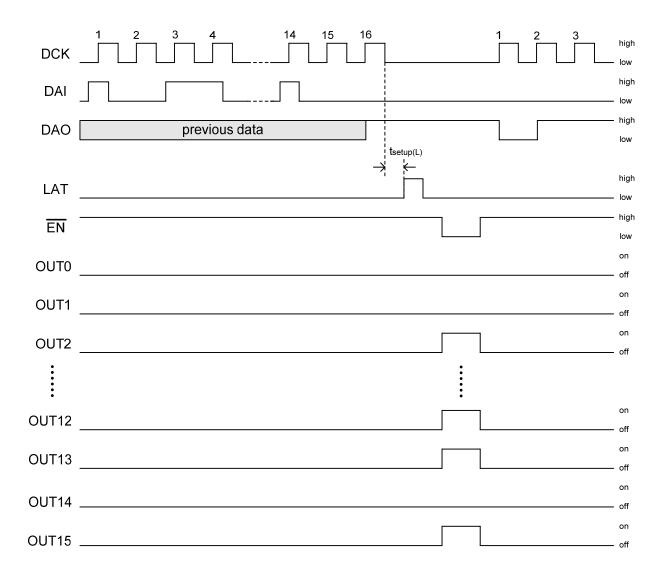
Constant-Current Output


Constant-current value of each output channel is set by an external resistor connected between the REXT pin and GND. Varying the resistor value can adjust the current scale ranging from 3mA to 60mA. The reference voltage of REXT terminal (Vrext) is approximately 1.25V. The output current value is calculated roughly by the following equation:

lout(mA)	5	10	20	30	40	50
М	48.85	48.15	47	46	44.88	43.43

Output Current as a Function of Rrext value

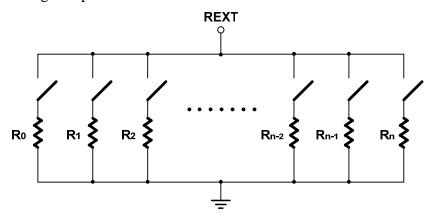
Output Current as a Function of Output Voltage



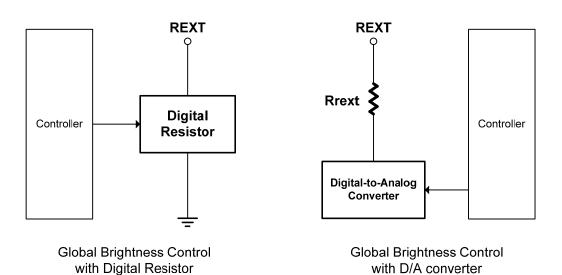
In order to obtain a good performance of constant-current output, a suitable output voltage is necessary. Users can get related information about the minimum output voltage above.

Serial Data Interface

The serial-in data (DAI) will be clocked into 8 bit shift register synchronized on the rising edge of the clock (DCK). The data '1' represents the corresponding current output 'ON', while the data '0' stands for 'OFF'. The data will be transferred into the 8 bit latch register when the strobe signal (LAT) is 'H' (level trigger); otherwise, the data will be held. The trigger timing of the serial-out data (DAO) will be shifted out on synchronization to the rising edge of the clock. All outputs are turned off while enable terminal (EN) is kept at high level. And they are active when EN shifts to low.



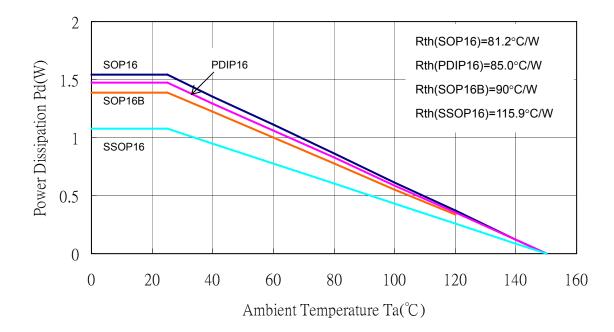
Outputs Delay


Large in-rush currents will occur when the system activates all the outputs at once. To reduce this effect, DM11A is designed to have a constant unit of delay (around 2.5ns) between outputs. The delay sequence for every output goes like this: OUT0 (no delay) \rightarrow OUT7 \rightarrow OUT1 \rightarrow OUT6 \rightarrow OUT2 \rightarrow OUT3 \rightarrow OUT3 \rightarrow OUT4 (the largest delay).

Global Brightness Control

DM13A has no built-in global brightness control feature. In order to obtain a lower resolution of global brightness control effect, two methods could be utilized. One is providing PWM signal synchronized on latch pulse to modulate the output enable terminal ($\overline{\text{EN}}$ pin). The other is to adjust the Rrext value or voltage drop across the external resistor. Please see the reference circuit below:

Global Brightness Control with Resistor Ladder

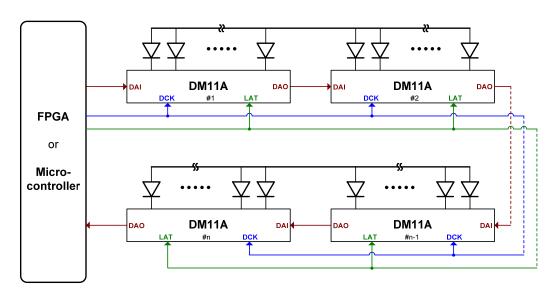


Power Dissipation

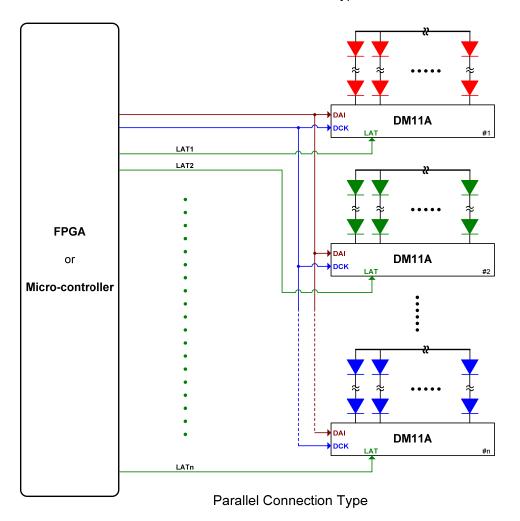
The power dissipation of a semiconductor chip is limited to its package and ambient temperature, in which the device requires the maximum output current calculated for given operating conditions. The maximum allowable power consumption can be calculated by the following equation:

$$Pd(max)(Watt) = \frac{Tj(junction\ temperature)(max)(\ ^{\circ}C) - Ta(ambient\ temperature)(\ ^{\circ}C)}{Rth(junction-to-air\ thermal\ resistance)(\ ^{\circ}C/Watt)}$$

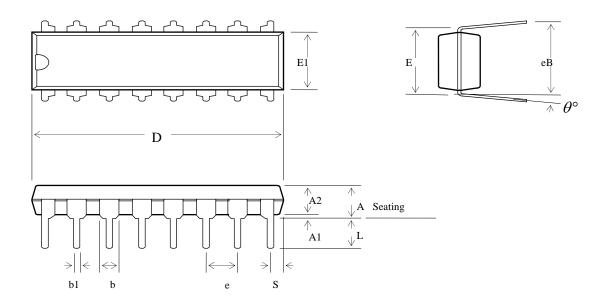
The relationship between power dissipation and operating temperature can be referred to the figure below:



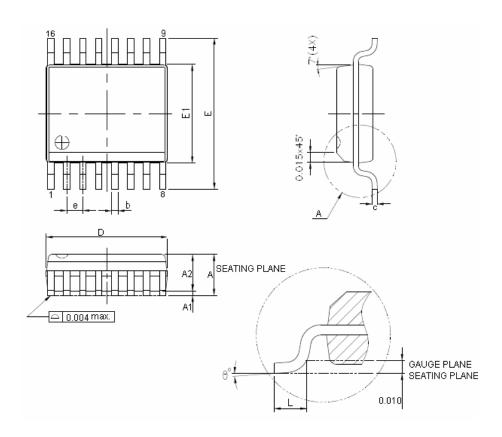
The power consumption of IC can be determined by the following equation and should be less than the maximum allowable power dissipation:


$$Pd(W) = Vcc(V) \times IdD(A) + Vout0 \times Iout0 \times Duty0 + \cdots + Vout7 \times Iout7 \times Duty7 \le Pd(max)(W)$$

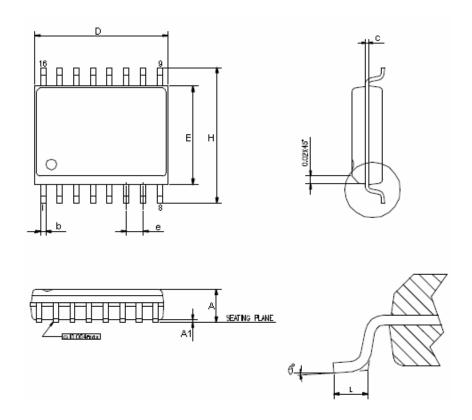
Typical Application



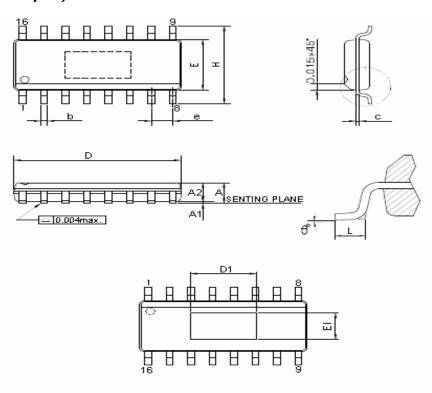
Serial Connection Type


PDIP16

	DIMENSION IN MM			DIMENSION IN INCH		
SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX
Α	-	-	5.334	-	-	0.21
A1	0.381	-	-	0.015	-	-
A2	3.175	3.302	3.429	0.125	0.130	0.135
b	1.300	1.500	1.700	0.05118	0.059	0.06693
b1	0.400	0.480	0.560	0.01575	0.019	0.02205
D	18.669	19.495	20.320	0.735	0.768	0.8
Е	7.366	7.620	7.874	0.29	0.300	0.31
E1	6.223	6.812	7.400	0.245	0.268	0.29134
е	2.290	2.540	2.790	0.09016	0.100	0.10984
eВ	8.509	9.017	9.525	0.335	0.355	0.375
L	2.540	3.175	3.810	0.1	0.125	0.15
S	-	-	1.120	-	-	0.04409
θ°	0	7	15	0	0.276	0.59055


SSOP16

	DIM	ENSION IN	N MM	DIMEN	NSION IN	INCH
SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX
Α	1.346	-	1.753	0.053	-	0.069
A1	0.102	-	0.254	0.004	-	0.010
A2	1.245	-	1.499	0.049	-	0.059
b	0.203	ı	0.305	0.008	ı	0.012
С	0.178	-	0.254	0.007	-	0.010
D	4.801	4.902	5.004	0.189	0.193	0.197
Е	5.791	5.994	6.198	0.228	0.236	0.244
е	C).635 BS(C	0.635 BS0	
E1	3.810	3.912	3.988	0.150	0.154	0.157
L	0.406	-	1.270	0.016	-	0.050
θ°	0	-	8	0	1	8


SOP16B (300mil)

	DIMENSION IN MM			DIME	ENSION IN	INCH
SYMBOL	MIN	TYP	MAX	MIN	TYP	MIN
Α	2.362	-	2.642	0.093	-	0.104
A1	0.102	-	0.305	0.004	-	0.012
b	C).406 BSC		0.406 BSC		
С	C).203 BSC		0.203 BSC		
D	10.109	-	10.490	0.398	-	0.413
E	7.391	-	7.595	0.291	-	0.299
е	1	1.270 BSC			1.270 BSC	
Н	10.008	-	10.643	0.394	0.419	
L	0.406	-	1.270	0.016	-	0.050
θ°	0	-	8	0	-	8

SOP16 (exposed pad)

	DIMENSION IN MM			DIM	ENSION I	N INCH
SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX
Α	1.346	-	1.753	0.053	-	0.069
A1	0.051	-	0.152	0.002	-	0.006
b	0	.406 BS	С		0.406 BS	SC SC
С	0	.203 BS	С	0.203 BSC		
D	9.804	-	10.008	0.386	-	0.394
Е	3.810	-	3.988	0.150	-	0.157
е	1	.270 BS	С	1.270 BSC		
Н	5.791	-	6.198	0.228	-	0.244
L	0.406	-	1.270	0.016	-	0.050
θ°	0	-	8	0	-	8
PAD SIZE1 (95×18E)						
E1	1.930	-	2.413	0.076	-	0.095
D1	3.658	-	4.572	0.144	-	0.180

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.